C语言编程—可变参数

简介: 有时,您可能会碰到这样的情况,您希望函数带有可变数量的参数,而不是预定义数量的参数。C 语言为这种情况提供了一个解决方案,它允许您定义一个函数,能根据具体的需求接受可变数量的参数。声明方式为:

有时,您可能会碰到这样的情况,您希望函数带有可变数量的参数,而不是预定义数量的参数。

C 语言为这种情况提供了一个解决方案,它允许您定义一个函数,能根据具体的需求接受可变数量的参数。

声明方式为:

int func_name(int arg1, ...);

其中,省略号 ... 表示可变参数列表。

下面的实例演示了这种函数的使用:

int func(int, ... )  {
   .
   .
   .
}
int main() {
   func(2, 2, 3);
   func(3, 2, 3, 4);
}

请注意,函数 func() 最后一个参数写成省略号,即三个点号(...),省略号之前的那个参数是 int,代表了要传递的可变参数的总数。为了使用这个功能,您需要使用 stdarg.h 头文件,该文件提供了实现可变参数功能的函数和宏。具体步骤如下:

  • 定义一个函数,最后一个参数为省略号,省略号前面可以设置自定义参数。
  • 在函数定义中创建一个 va_list 类型变量,该类型是在 stdarg.h 头文件中定义的。
  • 使用 int 参数和 va_start() 宏来初始化 va_list 变量为一个参数列表。宏 va_start() 是在 stdarg.h 头文件中定义的。
  • 使用 va_arg() 宏和 va_list 变量来访问参数列表中的每个项。
  • 使用宏 va_end() 来清理赋予 va_list 变量的内存。

常用的宏有:

  • va_start(ap, last_arg):初始化可变参数列表。ap 是一个 va_list 类型的变量,last_arg 是最后一个固定参数的名称(也就是可变参数列表之前的参数)。该宏将 ap 指向可变参数列表中的第一个参数。
  • va_arg(ap, type):获取可变参数列表中的下一个参数。ap 是一个 va_list 类型的变量,type 是下一个参数的类型。该宏返回类型为 type 的值,并将 ap 指向下一个参数。
  • va_end(ap):结束可变参数列表的访问。ap 是一个 va_list 类型的变量。该宏将 ap 置为 NULL

现在让我们按照上面的步骤,来编写一个带有可变数量参数的函数,并返回它们的平均值:

#include <stdio.h>
#include <stdarg.h>
double average(int num,...)
{
    va_list valist;
    double sum = 0.0;
    int i;
    /* 为 num 个参数初始化 valist */
    va_start(valist, num);
    /* 访问所有赋给 valist 的参数 */
    for (i = 0; i < num; i++)
    {
       sum += va_arg(valist, int);
    }
    /* 清理为 valist 保留的内存 */
    va_end(valist);
    return sum/num;
}
int main()
{
   printf("Average of 2, 3, 4, 5 = %f\n", average(4, 2,3,4,5));
   printf("Average of 5, 10, 15 = %f\n", average(3, 5,10,15));
}

在上面的例子中,average() 函数接受一个整数 num 和任意数量的整数参数。函数内部使用 va_list 类型的变量 va_list 来访问可变参数列表。在循环中,每次使用 va_arg() 宏获取下一个整数参数,并输出。最后,在函数结束时使用 va_end() 宏结束可变参数列表的访问。

当上面的代码被编译和执行时,它会产生下列结果。应该指出的是,函数 average() 被调用两次,每次第一个参数都是表示被传的可变参数的总数。省略号被用来传递可变数量的参数。

Average of 2, 3, 4, 5 = 3.500000
Average of 5, 10, 15 = 10.000000

一、可变参数

#include <stdio.h>
void debug_arg(unsigned int num, ...) 
{
    unsigned int i = 0;
    unsigned int *addr = &num;
    for (i = 0; i <= num; i++) 
    {
        /* *(addr + i) 从左往右依次取出传递进来的参数,类似于出栈过程 */
        printf("i=%d,value=%d\r\n", i, *(addr + i));
    }
}
int main(void)
{
    debug_arg(3, 66, 88, 666);
    return 0;
}

可变参数的工作原理,以32位机为例:

  • 1.函数参数的传递存储在栈中,从右至左压入栈中,压栈过程为递减。
  • 2.参数的传递以4字节对齐,float/double这里不讨论。
// 64 位机器用 8 字节对齐, 32 位 4 位对齐
#ifdef X64
#defin t long long
#else
#define t int
#endif
//VA_LIST套宏中可以使用,用来改变INTSIZEOF中t的类型
//固定参数详见
void test(int a, double b, char* c)
{
    char *p = (char*)&a;
    //因为&a = void 类型 需要转换,void * =&a 不需要转换但是使用时要转换
    printf("%p %p %p\n", &a, &b, &c);
    //观察地址变化
    printf("%p %s",(p+8),*(char**)(p+8+8));//64位机器时加8内存大小8字节对齐
    return;
}
//可变参数实验
void test1(char* s,char *st,...)
{
    char *ppt =(char*)&s;
    //printf("%p %p %p %p,",ppt,&s,&st,(char*)ppt+8);
    printf("%p %p %p %p\n", ppt, &s, &st, ppt + 8);
    printf("%s\n", *(char**)(ppt+4));
    printf(" %d\n",*(int*)(ppt + 4+4));//当是X64就加8 X86就加4因为内存对齐规则
    return;
}
int main()
{
    char *p = "Hello world";
    test1("111","eee",45234,23);
    //test(2, 2.2, "Hello world");x
    void *s = &p;
    printf("%s", *(char**)s);
    return 0;
}

C 语言提供了可变参数的支持,通过使用 <stdarg.h> 头文件中的宏和函数可以实现可变参数。主要涉及到的函数和宏如下:

  • va_start(va_list ap, last_arg) 宏:用于将ap指向可变参数列表的第一个参数,last_arg为可变参数列表中的最后一个已知参数,通常是一个函数形参。在使用可变参数前应该先调用该宏。
  • va_arg(va_list ap, type) 宏:用于获取ap指向的当前参数,并将指针移动到下一个参数。type表示当前参数的类型。
  • va_copy(va_list dest, va_list src) 宏:用于将src指向的参数复制到dest中。
  • va_end(va_list ap) 宏:用于结束可变参数的获取,并释放资源。

下面是一个示例程序,展示了如何使用可变参数:

#include <stdarg.h>
#include <stdio.h>
int sum(int count, ...) {
    va_list ap;  // 定义可变参数列表
    int result = 0;
    va_start(ap, count);  // 将ap指向可变参数列表的第一个参数
    for (int i = 0; i < count; ++i) {
        result += va_arg(ap, int);  // 获取当前参数,并将指针移动到下一个参数
    }
    va_end(ap);  // 结束可变参数的获取
    return result;
}
int main() {
    printf("sum(3, 1, 2, 3) = %d\n", sum(3, 1, 2, 3));
    printf("sum(5, 1, 2, 3, 4, 5) = %d\n", sum(5, 1, 2, 3, 4, 5));
    return 0;
}

输出结果为:

sum(3, 1, 2, 3) = 6
sum(5, 1, 2, 3, 4, 5) = 15
相关文章
|
1月前
|
存储 编译器 C语言
【C语言】数据类型全解析:编程效率提升的秘诀
在C语言中,合理选择和使用数据类型是编程的关键。通过深入理解基本数据类型和派生数据类型,掌握类型限定符和扩展技巧,可以编写出高效、稳定、可维护的代码。无论是在普通应用还是嵌入式系统中,数据类型的合理使用都能显著提升程序的性能和可靠性。
48 8
|
2月前
|
C语言
C语言编程中,错误处理至关重要,能提升程序的健壮性和可靠性
C语言编程中,错误处理至关重要,能提升程序的健壮性和可靠性。本文探讨了C语言中的错误类型(如语法错误、运行时错误)、基本处理方法(如返回值、全局变量、自定义异常处理)、常见策略(如检查返回值、设置标志位、记录错误信息)及错误处理函数(如perror、strerror)。强调了不忽略错误、保持处理一致性及避免过度处理的重要性,并通过文件操作和网络编程实例展示了错误处理的应用。
78 4
|
3月前
|
NoSQL C语言 索引
十二个C语言新手编程时常犯的错误及解决方式
C语言初学者常遇错误包括语法错误、未初始化变量、数组越界、指针错误、函数声明与定义不匹配、忘记包含头文件、格式化字符串错误、忘记返回值、内存泄漏、逻辑错误、字符串未正确终止及递归无退出条件。解决方法涉及仔细检查代码、初始化变量、确保索引有效、正确使用指针与格式化字符串、包含必要头文件、使用调试工具跟踪逻辑、避免内存泄漏及确保递归有基准情况。利用调试器、编写注释及查阅资料也有助于提高编程效率。避免这些错误可使代码更稳定、高效。
544 12
|
4月前
|
存储 算法 Linux
C语言 多进程编程(一)进程创建
本文详细介绍了Linux系统中的进程管理。首先,文章解释了进程的概念及其特点,强调了进程作为操作系统中独立可调度实体的重要性。文章还深入讲解了Linux下的进程管理,包括如何获取进程ID、进程地址空间、虚拟地址与物理地址的区别,以及进程状态管理和优先级设置等内容。此外,还介绍了常用进程管理命令如`ps`、`top`、`pstree`和`kill`的使用方法。最后,文章讨论了进程的创建、退出和等待机制,并展示了如何通过`fork()`、`exec`家族函数以及`wait()`和`waitpid()`函数来管理和控制进程。此外,还介绍了守护进程的创建方法。
C语言 多进程编程(一)进程创建
|
4月前
|
Linux C语言
C语言 多进程编程(三)信号处理方式和自定义处理函数
本文详细介绍了Linux系统中进程间通信的关键机制——信号。首先解释了信号作为一种异步通知机制的特点及其主要来源,接着列举了常见的信号类型及其定义。文章进一步探讨了信号的处理流程和Linux中处理信号的方式,包括忽略信号、捕捉信号以及执行默认操作。此外,通过具体示例演示了如何创建子进程并通过信号进行控制。最后,讲解了如何通过`signal`函数自定义信号处理函数,并提供了完整的示例代码,展示了父子进程之间通过信号进行通信的过程。
|
4月前
|
Linux C语言
C语言 多进程编程(四)定时器信号和子进程退出信号
本文详细介绍了Linux系统中的定时器信号及其相关函数。首先,文章解释了`SIGALRM`信号的作用及应用场景,包括计时器、超时重试和定时任务等。接着介绍了`alarm()`函数,展示了如何设置定时器以及其局限性。随后探讨了`setitimer()`函数,比较了它与`alarm()`的不同之处,包括定时器类型、精度和支持的定时器数量等方面。最后,文章讲解了子进程退出时如何利用`SIGCHLD`信号,提供了示例代码展示如何处理子进程退出信号,避免僵尸进程问题。
|
4月前
|
消息中间件 Unix Linux
C语言 多进程编程(五)消息队列
本文介绍了Linux系统中多进程通信之消息队列的使用方法。首先通过`ftok()`函数生成消息队列的唯一ID,然后使用`msgget()`创建消息队列,并通过`msgctl()`进行操作,如删除队列。接着,通过`msgsnd()`函数发送消息到消息队列,使用`msgrcv()`函数从队列中接收消息。文章提供了详细的函数原型、参数说明及示例代码,帮助读者理解和应用消息队列进行进程间通信。
|
4月前
|
缓存 Linux C语言
C语言 多进程编程(六)共享内存
本文介绍了Linux系统下的多进程通信机制——共享内存的使用方法。首先详细讲解了如何通过`shmget()`函数创建共享内存,并提供了示例代码。接着介绍了如何利用`shmctl()`函数删除共享内存。随后,文章解释了共享内存映射的概念及其实现方法,包括使用`shmat()`函数进行映射以及使用`shmdt()`函数解除映射,并给出了相应的示例代码。最后,展示了如何在共享内存中读写数据的具体操作流程。
|
4月前
|
消息中间件 Unix Linux
C语言 多进程编程(二)管道
本文详细介绍了Linux下的进程间通信(IPC),重点讨论了管道通信机制。首先,文章概述了进程间通信的基本概念及重要性,并列举了几种常见的IPC方式。接着深入探讨了管道通信,包括无名管道(匿名管道)和有名管道(命名管道)。无名管道主要用于父子进程间的单向通信,有名管道则可用于任意进程间的通信。文中提供了丰富的示例代码,展示了如何使用`pipe()`和`mkfifo()`函数创建管道,并通过实例演示了如何利用管道进行进程间的消息传递。此外,还分析了管道的特点、优缺点以及如何通过`errno`判断管道是否存在,帮助读者更好地理解和应用管道通信技术。
|
4月前
|
存储 Ubuntu Linux
C语言 多线程编程(1) 初识线程和条件变量
本文档详细介绍了多线程的概念、相关命令及线程的操作方法。首先解释了线程的定义及其与进程的关系,接着对比了线程与进程的区别。随后介绍了如何在 Linux 系统中使用 `pidstat`、`top` 和 `ps` 命令查看线程信息。文档还探讨了多进程和多线程模式各自的优缺点及适用场景,并详细讲解了如何使用 POSIX 线程库创建、退出、等待和取消线程。此外,还介绍了线程分离的概念和方法,并提供了多个示例代码帮助理解。最后,深入探讨了线程间的通讯机制、互斥锁和条件变量的使用,通过具体示例展示了如何实现生产者与消费者的同步模型。