带你读《2022技术人的百宝黑皮书》——多模态技术在淘宝主搜召回场景的探索(7)

简介: 带你读《2022技术人的百宝黑皮书》——多模态技术在淘宝主搜召回场景的探索(7)

带你读《2022技术人的百宝黑皮书》——多模态技术在淘宝主搜召回场景的探索(6) https://developer.aliyun.com/article/1246958?groupCode=taobaotech



预训练实验


我们选取部分类目下1亿量级的商品池,构造了预训练数据集。


我们的Baseline模型是经过优化的FashionBert,加入了QIM和QIM2任务,提取Query和Item向量时采用只对非Padding Token做Mean Pooling的方式。以下实验探索了以双塔方式建模,相对于单塔带来的增益,并通过消融实验给出关键部分的作用。


image.png


从这些实验中,我们能得出如下结论:


1.实验8 vs 实验3:经过调优后的双塔模型,在Recall@1000上显著高于单塔Baseline。


2.实验3vs实验1/2:对单塔模型来说,如何提取Query和Item向量是重要的。我们尝试过Query和Item都用[CLS] token,得到比较差的结果。实验1对Query和Item分别用对应的Token做Mean Pooling,效果要好一些,但进一步去掉PaddingToken再做Mean Pooling,会带来更大的提升。实验2验证了显式建模Query-Image匹配来突出图像信息的作用,会带来提升。


3.实验6 vs 实验4/5:实验4将Item塔的MLM/MPM任务上移到跨模态Encoder,效果会差一些,因为将这两个任务放在Item塔能够增强Item表示的学习;另外,在Item塔做基于Title和Image的跨模态恢复会有更强的对应关系。实验5验证了对Query和Item向量在训练和预测时增加L2 Norm,会带来提升。


4.实验6/7/8:改变QIC任务的Loss会带来提升,Softmax相比于Sigmoid更接近下游的向量召回任务,AM-Softmax则更进一步推开了正样本与负样本之间的距离。




带你读《2022技术人的百宝黑皮书》——多模态技术在淘宝主搜召回场景的探索(8) https://developer.aliyun.com/article/1246956?groupCode=taobaotech

相关文章
带你读《2022技术人的百宝黑皮书》——多模态技术在淘宝主搜召回场景的探索(1)
带你读《2022技术人的百宝黑皮书》——多模态技术在淘宝主搜召回场景的探索(1)
130 0
|
数据挖掘
带你读《2022技术人的百宝黑皮书》——多模态技术在淘宝主搜召回场景的探索(4)
带你读《2022技术人的百宝黑皮书》——多模态技术在淘宝主搜召回场景的探索(4)
122 0
|
搜索推荐
带你读《2022技术人的百宝黑皮书》——多模态技术在淘宝主搜召回场景的探索(9)
带你读《2022技术人的百宝黑皮书》——多模态技术在淘宝主搜召回场景的探索(9)
115 0
|
计算机视觉
带你读《2022技术人的百宝黑皮书》——多模态技术在淘宝主搜召回场景的探索(3)
带你读《2022技术人的百宝黑皮书》——多模态技术在淘宝主搜召回场景的探索(3)
139 0
带你读《2022技术人的百宝黑皮书》——多模态技术在淘宝主搜召回场景的探索(8)
带你读《2022技术人的百宝黑皮书》——多模态技术在淘宝主搜召回场景的探索(8)
123 0
带你读《2022技术人的百宝黑皮书》——多模态技术在淘宝主搜召回场景的探索(5)
带你读《2022技术人的百宝黑皮书》——多模态技术在淘宝主搜召回场景的探索(5)
113 0
带你读《2022技术人的百宝黑皮书》——多模态技术在淘宝主搜召回场景的探索(6)
带你读《2022技术人的百宝黑皮书》——多模态技术在淘宝主搜召回场景的探索(6)
110 0
|
计算机视觉 异构计算 SEO
带你读《2022技术人的百宝黑皮书》——多模态技术在淘宝主搜召回场景的探索(2)
带你读《2022技术人的百宝黑皮书》——多模态技术在淘宝主搜召回场景的探索(2)
120 0
|
缓存 异构计算
带你读《2022技术人的百宝黑皮书》——淘宝逛逛ODL模型优化总结(3)
带你读《2022技术人的百宝黑皮书》——淘宝逛逛ODL模型优化总结(3)
|
并行计算 数据可视化 TensorFlow
带你读《2022技术人的百宝黑皮书》——淘宝逛逛ODL模型优化总结(4)
带你读《2022技术人的百宝黑皮书》——淘宝逛逛ODL模型优化总结(4)