恒参信道特性及其对信号传输的影响

简介: 恒参信道特性及其对信号传输的影响

本专栏包含信息论与编码的核心知识,按知识点组织,可作为教学或学习的参考。markdown版本已归档至【Github仓库:https://github.com/timerring/information-theory 】或者【AIShareLab】回复 信息论 获取。

恒参信道特性及其对信号传输的影响

恒参信道 :信道特性不随时间变化或者变化很缓慢,信道特性主要由传输媒介所决定,如传输媒介基本不随时间变化,则它构成的信道属于恒参信道。

若信道的冲激响应为 ℎ(𝑡),信道输入为 𝑥(𝑡),则信道的输出 ,其中𝑛(𝑡)为加性高斯白噪声,双边功率谱密度为$\frac{N_{0}}{2}$W/Hz。

无失真信道满足的条件

设信道输入信号为𝑥(𝑡),输出信号为 𝑦(𝑡),信道传输函数为 𝐻(𝑓) 。

若满足:

$$ y(t)=\alpha x\left(t-t_{0}\right) \alpha \in R, t_{0}>0 $$

则称信道为理想的无失真信道。

若信道无失真, 有$H(f)=\alpha e^{-j 2 \pi f t_{0}}$, 即$|H(f)|=\alpha \quad \angle H(f)=\varphi(f)=-2 \pi f t_{0}$

时延特性

$$ \tau(f)=-\frac{\varphi(f)}{2 \pi f}=t_{0}, f>0 $$

群时延特性

$$ \tau_{\mathrm{G}}(f)=-\frac{1}{2 \pi} \frac{d \varphi(f)}{d f}=t_{0}, f>0 $$

信道为理想带通信道,即在信道的通带范围内,信道的幅频特性是常数,群时延特性是常数,则相应的带通信号(通带范围相同)经过该信道时,下面描述正确的是 (B)

A. 信道输出波形无失真

B. 信道输出波形的复包络无失真

带通信号的复包络无失真

若带通系统的等效基带系统能使输入输出的复包络满足无失真关系,即

$$ y_{L}(t)=K x_{L}\left(t-t_{0}\right) $$

其中 K 是任意常数, 则称此带通系统对复包络无失真。 复包络无失真要求:

$$ \begin{aligned} H(f)=&\{\begin{array}{c} H_{L}(f-f_{c}), f>0 \\ H_{L}^{*}(-f-f_{c}), f<0 \end{array}=\{\begin{array}{l} a e^{-j(2 \pi f t_{0}-\theta), f>0} \\ a e^{-j(2 \pi f t_{0}+\theta), f<0} \end{array}..\\ & \angle H(f)=\varphi(f)=-2 \pi f t_{0}+\theta, f>0 \\ & \tau_{\mathrm{G}}(f)=-\frac{1}{2 \pi} \frac{d \varphi(f)}{d f}=t_{0}, f>0 \end{aligned} $$

例如最经典的希尔伯特变换器:

$$ \begin{array}{c} H(f)=-j \operatorname{sgn}(f)=\left\{\begin{array}{ll} e^{-j \frac{\pi}{2}}, & f>0 \\ e^{j \frac{\pi}{2}}, & f<0 \end{array}\right. \\ \angle H(f)=\varphi(f)=-\frac{\pi}{2}, f>0 \\ \tau_{\mathrm{G}}(f)=-\frac{1}{2 \pi} \frac{d \varphi(f)}{d f}=0, f>0 \end{array} $$

带通信号

$$ x(t)=m(t) \cos 2 \pi f_{c} t-s(t) \sin 2 \pi f_{c} t \rightarrow x_{L}(t)=m(t)+j s(t) $$

经过Hilbert 变换器后有

$$ \begin{array}{l} \hat{x}(t)=s(t) \cos 2 \pi f_{c} t+m(t) \sin 2 \pi f_{c} t \rightarrow \hat{x}_{L}(t)=s(t)-j m(t) \\ =-j x_{L}(t) \end{array} $$

信道不理想对输出信号的影响

  • 幅频失真:信号中不同频率分量分别受到信道不同的衰减。它对模拟通信影响较大,导致信号波形畸变,输出信噪比降低。
  • 相频失真(群时延失真):信号中不同频率的分量受到信道不同的时延。它对数字通信影响较大,会引起严重的码间干扰,造成误码。
  • 时延特性为常数时,信号传输不引起信号的波形失真;群时延特性为常数时,信号传输不引起信号复包络的失真。

参考文献:

  1. Proakis, John G., et al. Communication systems engineering. Vol. 2. New Jersey: Prentice Hall, 1994.
  2. Proakis, John G., et al. SOLUTIONS MANUAL Communication Systems Engineering. Vol. 2. New Jersey: Prentice Hall, 1994.
  3. 周炯槃. 通信原理(第3版)[M]. 北京:北京邮电大学出版社, 2008.
  4. 樊昌信, 曹丽娜. 通信原理(第7版) [M]. 北京:国防工业出版社, 2012.
目录
相关文章
|
2月前
|
网络性能优化 数据安全/隐私保护 网络架构
|
2月前
|
网络协议 程序员
时延抖动和通信的本质
时延抖动和通信的本质
33 1
|
8月前
|
缓存 NoSQL 应用服务中间件
零拷贝并非万能解决方案:重新定义数据传输的效率极限
本文讨论了零拷贝在优化数据传输效率方面的局限性。尽管零拷贝技术在减少数据传输过程中的内存拷贝次数方面有很大的优势,但它并非适用于所有情况。文章介绍了一些其他的优化方法,如异步I/O和直接I/O的组合、根据文件大小选择不同的优化方式。至此,我们的计算机基础专栏就结束了,不知道大家有没有发现,操作系统底层提供了丰富的解决方案来支持应用程序的复杂性和可扩展性。对于任何工作中遇到的问题,我们都可以从操作系统的角度寻找解决方法。
零拷贝并非万能解决方案:重新定义数据传输的效率极限
|
10月前
电磁波定义、特性以及信道相关知识
电磁波定义、特性以及信道相关知识
122 1
带你读《5G 系统技术原理与实现》——3.5 5G 物理信道和信号
带你读《5G 系统技术原理与实现》——3.5 5G 物理信道和信号
带你读《5G大规模天线增强技术》——2.3.2 信道模型介绍
带你读《5G大规模天线增强技术》——2.3.2 信道模型介绍
带你读《5G大规模天线增强技术》——2.3.2 信道模型介绍
带你读《5G大规模天线增强技术》——2.2.1 信道的表达式
带你读《5G大规模天线增强技术》——2.2.1 信道的表达式
带你读《5G大规模天线增强技术》——2.3.1 信道建模方法
带你读《5G大规模天线增强技术》——2.3.1 信道建模方法
|
机器学习/深度学习 传感器 算法
【通信-SCMA】基于串行干扰消除的多用户检测算法附matlab代码
【通信-SCMA】基于串行干扰消除的多用户检测算法附matlab代码
带你读《5G 系统技术原理与实现》——2.2.3 FR1 与 FR2 工作频段与信道带宽对应关系
带你读《5G 系统技术原理与实现》——2.2.3 FR1 与 FR2 工作频段与信道带宽对应关系