Java Review - 并发编程_原子操作类原理剖析

简介: Java Review - 并发编程_原子操作类原理剖析

195d03d17afc4a928bc581f313b01dfe.png

概述


JUC包提供了一系列的原子性操作类,这些类都是使用非阻塞算法CAS实现的,相比使用锁实现原子性操作这在性能上有很大提高。


由于原子性操作类的原理都大致相同,我们以AtomicLong类的实现原理为例,并探讨JDK8新增的 LongAdder和LongAccumulator类的原理


原子变量操作类


JUC并发包中包含有AtomicInteger、AtomicLong和AtomicBoolean等原子性操作类

9f846cfe40a8400c842a7320f7b4ddf7.png


AtomicLong是原子性递增或者递减类,其内部使用Unsafe来实现,我们看下面的代码

package java.util.concurrent.atomic;
import java.util.function.LongUnaryOperator;
import java.util.function.LongBinaryOperator;
import sun.misc.Unsafe;
/**
 * @since 1.5
 * @author Doug Lea
 */
public class AtomicLong extends Number implements java.io.Serializable {
    private static final long serialVersionUID = 1927816293512124184L;
    // 1 获取Unsafe实例
    private static final Unsafe unsafe = Unsafe.getUnsafe();
  // 2 存放变量的偏移量
    private static final long valueOffset;
    /**
     * Records whether the underlying JVM supports lockless
     * compareAndSwap for longs. While the Unsafe.compareAndSwapLong
     * method works in either case, some constructions should be
     * handled at Java level to avoid locking user-visible locks.
     */
  // 3 判断JVM是否支持Long类型的CAS
    static final boolean VM_SUPPORTS_LONG_CAS = VMSupportsCS8();
    /**
     * Returns whether underlying JVM supports lockless CompareAndSet
     * for longs. Called only once and cached in VM_SUPPORTS_LONG_CAS.
     */
    private static native boolean VMSupportsCS8();
    static {
        try {
      // 4 获取value在AtomicLong中的偏移量
            valueOffset = unsafe.objectFieldOffset
                (AtomicLong.class.getDeclaredField("value"));
        } catch (Exception ex) { throw new Error(ex); }
    }
  // 5  实际变量值
    private volatile long value;
    /**
     * Creates a new AtomicLong with the given initial value.
     *
     * @param initialValue the initial value
     */
    public AtomicLong(long initialValue) {
        value = initialValue;
    }
  .......
  .......
  .......
  .......
}



代码(1)通过Unsafe.getUnsafe()方法获取到Unsafe类的实例


为何能通过Unsafe.getUnsafe()方法获取到Unsafe类的实例?其实这是因为AtomicLong类也是在rt.jar包下面的,AtomicLong类就是通过BootStarp类加载器进行加载的。


代码(5)中的value被声明为volatile的,这是为了在多线程下保证内存可见性,value是具体存放计数的变量。


代码(2)(4)获取value变量在AtomicLong类中的偏移量。


主要方法


incrementAndGet 、decrementAndGet 、getAndIncrement、getAndDecrement


【JDK8+】

//(6)调用 Insafe方法,原子性设置 value值为原始值+1,返回值为递增后的值
  public final long incrementAndGet() {
    return unsafe.getAndAddLong(this, valueOffset, 1L) + 1L;
  }
//(7)调用 unsafe方法,原子性设置va1ue值为原始值-1,返回值为递减之后的值
 public final long decrementAndGet() {
        return unsafe.getAndAddLong(this, valueOffset, -1L) - 1L;
    }
//(8)调用 unsafe方法,原子性设置va1ue值为原始值+1,返回值为原始值
public final long getAndIncrement() {
        return unsafe.getAndAddLong(this, valueOffset, 1L);
    }
//(9)调用 unsafe方法,原子性设置va1ue值为原始值-1,返回值为原始值
  public final long getAndDecrement() {
        return unsafe.getAndAddLong(this, valueOffset, -1L);
    }

我们可以发现这几个方法内部都是通过调用Unsafe的getAndAddLong方法来实现操作,这个函数是个原子性操作。


第一个参数是AtomicLong实例的引用, 第二个参数是value变量在AtomicLong中的偏移值, 第三个参数是要设置的第二个变量的值 。


getAndIncrement方法在JDK 7中的实现逻辑为

public final long getAndIncrement(){
  while(true){
    long current=get();
    long next= current + 1;
    if (compareAndSet(current, next))
      return current
  }
}


在如上代码中,每个线程是先拿到变量的当前值(由于value是volatile变量,所以这里拿到的是最新的值),然后在工作内存中对其进行增1操作,而后使用CAS修改变量的值。如果设置失败,则循环继续尝试,直到设置成功。


而JDK 8中的逻辑为

unsafe.getAndAddLong(this, valueOffset, -1L);
public final long getAndAddLong(Object var1, long var2, long var4) {
        long var6;
        do {
            var6 = this.getLongVolatile(var1, var2);
        } while(!this.compareAndSwapLong(var1, var2, var6, var6 + var4));
        return var6;
    }

可以看到,JDK 7的AtomicLong中的循环逻辑已经被JDK 8中的原子操作类UNsafe内置了,之所以内置应该是考虑到这个函数在其他地方也会用到,而内置可以提高复用性。


boolean compareAndSet(long expect, long update)


    /**
     * Atomically sets the value to the given updated value
     * if the current value {@code ==} the expected value.
     *
     * @param expect the expected value
     * @param update the new value
     * @return {@code true} if successful. False return indicates that
     * the actual value was not equal to the expected value.
     */
    public final boolean compareAndSet(long expect, long update) {
        return unsafe.compareAndSwapLong(this, valueOffset, expect, update);
    }


我们可以看到内部还是调用了unsafe.compareAndSwapLong方法。如果原子变量中的value值等于expect,则使用update值更新该值并返回true,否则返回false。


小Demo

线程使用AtomicLong统计0的个数的例子

import java.util.concurrent.atomic.AtomicLong;
/**
 * @author 小工匠
 * @version 1.0
 * @description: TODO
 * @date 2021/11/30 22:52
 * @mark: show me the code , change the world
 */
public class AtomicLongTest {
    //(10)创建Long型原子计数器
    private static AtomicLong atomicLong = new AtomicLong();
    //(11)创建数据源
    private static Integer[] arrayOne = new Integer[]{0, 1, 2, 3, 0, 5, 6, 0, 56, 0};
    private static Integer[] arrayTwo = new Integer[]{10, 1, 2, 3, 0, 5, 6, 0, 56, 0};
    public static void main(String[] args) throws InterruptedException {
        //(12)线程one统计数组arrayOne中0的个数
        Thread threadOne = new Thread(() -> {
            int size = arrayOne.length;
            for (int i = 0; i < size; ++i) {
                if (arrayOne[i].intValue() == 0) {
                    atomicLong.incrementAndGet();
                }
            }
        });
        //(13)线程two统计数组arrayTwo中0的个数
        Thread threadTwo = new Thread(() -> {
            int size = arrayTwo.length;
            for (int i = 0; i < size; ++i) {
                if (arrayTwo[i].intValue() == 0) {
                    atomicLong.incrementAndGet();
                }
            }
        });
        //(14)启动子线程
        threadOne.start();
        threadTwo.start();
        //(15)等待线程执行完毕
        threadOne.join();
        threadTwo.join();
        System.out.println("count 0:" + atomicLong.get());
    }
}

642d94cb689a4d2dbe5aefca7b07f537.png


两个线程各自统计自己所持数据中0的个数,每当找到一个0就会调用AtomicLong的原子性递增方法


小结


在没有原子类的情况下,实现计数器需要使用一定的同步措施,比如使用synchronized关键字等,但是这些都是阻塞算法,对性能有一定损耗,而这里我们介绍的这些原子操作类都使用CAS非阻塞算法,性能更好。


但是在高并发情况下AtomicLong还会存在性能问题。JDK 8提供了一个在高并发下性能更好的LongAdder类,且听下篇分解

相关文章
|
3月前
|
安全 Java 数据建模
Java记录类:简化数据载体的新选择
Java记录类:简化数据载体的新选择
243 101
|
3月前
|
安全 Java 开发者
Java记录类:简化数据载体的新方式
Java记录类:简化数据载体的新方式
293 100
|
4月前
|
安全 IDE Java
Java记录类型(Record):简化数据载体类
Java记录类型(Record):简化数据载体类
428 143
|
5月前
|
监控 Java API
现代 Java IO 高性能实践从原理到落地的高效实现路径与实战指南
本文深入解析现代Java高性能IO实践,涵盖异步非阻塞IO、操作系统优化、大文件处理、响应式网络编程与数据库访问,结合Netty、Reactor等技术落地高并发应用,助力构建高效可扩展的IO系统。
153 0
|
2月前
|
存储 Java 索引
用Java语言实现一个自定义的ArrayList类
自定义MyArrayList类模拟Java ArrayList核心功能,支持泛型、动态扩容(1.5倍)、增删改查及越界检查,底层用Object数组实现,适合学习动态数组原理。
105 4
|
2月前
|
IDE JavaScript Java
在Java 11中,如何处理被弃用的类或接口?
在Java 11中,如何处理被弃用的类或接口?
173 5
|
2月前
|
JSON 网络协议 安全
【Java】(10)进程与线程的关系、Tread类;讲解基本线程安全、网络编程内容;JSON序列化与反序列化
几乎所有的操作系统都支持进程的概念,进程是处于运行过程中的程序,并且具有一定的独立功能,进程是系统进行资源分配和调度的一个独立单位一般而言,进程包含如下三个特征。独立性动态性并发性。
165 1
|
2月前
|
Java Go 开发工具
【Java】(8)正则表达式的使用与常用类分享
正则表达式定义了字符串的模式。正则表达式并不仅限于某一种语言,但是在每种语言中有细微的差别。
228 1
|
2月前
|
存储 Java 程序员
【Java】(6)全方面带你了解Java里的日期与时间内容,介绍 Calendar、GregorianCalendar、Date类
java.util 包提供了 Date 类来封装当前的日期和时间。Date 类提供两个构造函数来实例化 Date 对象。第一个构造函数使用当前日期和时间来初始化对象。Date( )第二个构造函数接收一个参数,该参数是从1970年1月1日起的毫秒数。
174 1
|
2月前
|
JSON 网络协议 安全
【Java基础】(1)进程与线程的关系、Tread类;讲解基本线程安全、网络编程内容;JSON序列化与反序列化
几乎所有的操作系统都支持进程的概念,进程是处于运行过程中的程序,并且具有一定的独立功能,进程是系统进行资源分配和调度的一个独立单位一般而言,进程包含如下三个特征。独立性动态性并发性。
191 1