带你读《云原生机密计算最佳实践白皮书》——02机密计算简介与现状

简介: 带你读《云原生机密计算最佳实践白皮书》——02机密计算简介与现状

机密计算简介与现状


数据安全与机密计算

数据在整个生命周期有三种状态:At-Rest(静态)、In-Transit(传输中)和 In-Use(使用中)。

• At-Rest 状态下,一般会把数据存放在硬盘、闪存或其他的存储设备中。保护 At-Rest 状态的数据有很多方法,比如对文件加密后再存放或者对存储设备加密。

• In-Transit 是指通过公网或私网把数据从一个地方传输到其他地方,用户可以在传输之前对文件加密或者采用安全的传输协议保证数据在传输中的安全,比如HTTPS、SSL、TLS、FTPS 等。

• In-Use 是指正在使用的数据。即便数据在传输过程中是被加密的,但只有把数据解密后才能进行计算和使用。也就意味着,如果数据在使用时没有被保护的话,仍然有数据泄露和被篡改的风险。

在这个世界上,我们不断地存储、使用和共享各种敏感数据:从信用卡数据到病历,从防火墙配置到地理位置数据。保护处于所有状态中的敏感数据比以往任何时候都更为重要。如今被广泛使用的加密技术可以用来提供数据机密性(防止未经授权的访问)和数据完整性(防止或检测未经授权的修改),但目前这些技术主要被用于保护传输中和静止状态的数据,目前对数据的第三个状态“使用中”提供安全防护的技术仍旧属于新的前沿领域。

机密计算指使用基于硬件的可信执行环境(Trusted Execution Environment,TEE)对使用中的数据提供保护。 通过使用机密计算,我们现在能够针对“使用中”的数据提供保护。

机密计算的核心功能有:

• 保护 In-Use 数据的机密性。未经授权的实体(主机上的应用程序、主机操作系统和Hypervisor、系统管理员或对硬件具有物理访问权限的任何其他人。)无法查看在TEE中使用的数据,内存中的数据是被加密的,即便被攻击者窃取到内存数据也不会泄露数据。

• 保护 In-Use 数据的完整性。防止未经授权的实体篡改正在处理中的数据,度量值保证了数据和代码的完整性,使用中有任何数据或代码的改动都会引起度量值的变化。

• 可证明性。通常 TEE 可以提供其起源和当前状态的证据或度量值,以便让另一方进行验证,并决定是否信任 TEE 中运行的代码。最重要的是,此类证据是由硬件签名,并且制造商能够提供证明,因此验证证据的一方就可以在一定程度上保证证据是可靠的,而不是由恶意软件或其他未经授权的实体生成的。


机密计算的现状与困境

业界内的诸多厂商就已经开始关注并投入到机密计算中。各大芯片厂家和云服务提供商(Cloud Service Provider,简称 CSP)都在机密计算领域投入研发资源,并组建了“机密计算联盟”。该联盟专门针对云服务及硬件生态,致力于保护计算时的数据安全。

目前机密计算正处于百花齐发和百家争鸣的阶段,市场和商业化潜力非常巨大。 但机密计算在云原生场景中还有一些不足:

1、用户心智不足。用户普遍对机密计算这项新技术的认知感不足,难以将其与自己的业务直接联系起来,导致需求不够旺盛。

2、技术门槛高。目前,相比传统开发方式,主流的机密计算技术的编程模型给人们对机密计算技术的印象是学习和使用门槛高,用户需要使用机密计算技术对业务进行改造,令很多开发者望而生畏。

3、应用场景缺乏普适性。目前,机密计算主要被应用于具有特定行业壁垒或行业特征的场景,如隐私计算和金融等。这些复杂场景让普通用户很难触达机密计算技术,也难以为普通用户打造典型应用场景。同时,不同厂商的CPU TEE虽各自具有自身的特点,但都无法解决异构计算算力不足的问题,限制了机密计算的应用域。

4、信任根和信任模型问题。在信创、数据安全和安全合规等政策性要求对CPU TEE的信任根存在自主可控的诉求;与此同时,虽然有部分用户愿意信任云厂商和第三方提供的解决方案,但多数用户对云厂商和第三方不完全信任,要求将机密计算技术方案从租户TCB中完全移除。

总之,目前已有的机密计算技术方案存在以上困境,不能够完全满足用户不同场景的安全需求。为了解决以

上四个问题,云原生机密计算SIG应运而生,主要可概括为四点:

1、推广机密计算技术。

• 邀请参与方在龙蜥大讲堂介绍和推广机密计算技术与解决方案。

• 与芯片厂商合作,未来可以通过龙蜥实验室让外部用户体验机密计算技术,对机密计算有一个更深入化的了解。

2、提高机密计算技术的可用性。

• 支持多种机密计算硬件。

• 提供多种运行时底座和编程框架供用户选择。

3、提升机密计算技术的泛用性

• 为最有代表性的通用计算场景打造解决方案和案例(特性即产品)。

• 积极拥抱并参与到机密计算前沿技术领域的探索与实践,加速创新技术的落地。

4、澄清误会并增加用户信心

• 发布机密计算技术白皮书。

• 与社区和业界合作,未来提供结合了软件供应链安全的远程证明服务体系。

相关实践学习
CentOS 7迁移Anolis OS 7
龙蜥操作系统Anolis OS的体验。Anolis OS 7生态上和依赖管理上保持跟CentOS 7.x兼容,一键式迁移脚本centos2anolis.py。本文为您介绍如何通过AOMS迁移工具实现CentOS 7.x到Anolis OS 7的迁移。
相关文章
|
3月前
|
运维 Cloud Native 云计算
云原生技术:探索未来计算的无限可能
【10月更文挑战第8天】 云原生技术,作为云计算领域的一次革新性突破,正引领着企业数字化转型的新浪潮。它不仅重塑了应用的构建、部署和运行方式,还通过极致的弹性、敏捷性和可扩展性,解锁了未来计算的无限潜力。本文将深入浅出地解析云原生技术的核心理念、关键技术组件及其在不同行业中的实际应用案例,展现其如何赋能业务创新,加速企业的云化之旅。
70 7
|
2天前
|
运维 Cloud Native Serverless
Serverless Argo Workflows大规模计算工作流平台荣获信通院“云原生技术创新标杆案例”
2024年12月24日,阿里云Serverless Argo Workflows大规模计算工作流平台荣获由中国信息通信研究院颁发的「云原生技术创新案例」奖。
|
2月前
|
Kubernetes Cloud Native Ubuntu
庆祝 .NET 9 正式版发布与 Dapr 从 CNCF 毕业:构建高效云原生应用的最佳实践
2024年11月13日,.NET 9 正式版发布,Dapr 从 CNCF 毕业,标志着云原生技术的成熟。本文介绍如何使用 .NET 9 Aspire、Dapr 1.14.4、Kubernetes 1.31.0/Containerd 1.7.14、Ubuntu Server 24.04 LTS 和 Podman 5.3.0-rc3 构建高效、可靠的云原生应用。涵盖环境准备、应用开发、Dapr 集成、容器化和 Kubernetes 部署等内容。
73 5
|
3月前
|
人工智能 Cloud Native 安全
从云原生到 AI 原生,网关的发展趋势和最佳实践
本文整理自阿里云智能集团资深技术专家,云原生产品线中间件负责人谢吉宝(唐三)在云栖大会的精彩分享。讲师深入浅出的分享了软件架构演进过程中,网关所扮演的各类角色,AI 应用的流量新特征对软件架构和网关所提出的新诉求,以及基于阿里自身实践所带来的开源贡献和商业能力。
277 11
|
3月前
|
监控 Cloud Native 持续交付
云原生架构下微服务的最佳实践与挑战####
【10月更文挑战第20天】 本文深入探讨了云原生架构在现代软件开发中的应用,特别是针对微服务设计模式的最优实践与面临的主要挑战。通过分析容器化、持续集成/持续部署(CI/CD)、服务网格等关键技术,阐述了如何高效构建、部署及运维微服务系统。同时,文章也指出了在云原生转型过程中常见的难题,如服务间的复杂通信、安全性问题以及监控与可观测性的实现,为开发者和企业提供了宝贵的策略指导和解决方案建议。 ####
54 5
|
2月前
|
Kubernetes Cloud Native 持续交付
云原生架构下的微服务设计原则与最佳实践##
在数字化转型的浪潮中,云原生技术以其高效、灵活和可扩展的特性成为企业IT架构转型的首选。本文深入探讨了云原生架构的核心理念,聚焦于微服务设计的关键原则与实施策略,旨在为开发者提供一套系统性的方法论,以应对复杂多变的业务需求和技术挑战。通过分析真实案例,揭示了如何有效利用容器化、持续集成/持续部署(CI/CD)、服务网格等关键技术,构建高性能、易维护的云原生应用。文章还强调了文化与组织变革在云原生转型过程中的重要性,为企业顺利过渡到云原生时代提供了宝贵的见解。 ##
|
3月前
|
Kubernetes Cloud Native 开发者
探秘云原生计算:Kubernetes与Docker的协同进化
在这个快节奏的数字时代,云原生技术以其灵活性和可扩展性成为了开发者们的新宠。本文将带你深入了解Kubernetes和Docker如何共同塑造现代云计算的架构,以及它们如何帮助企业构建更加敏捷和高效的IT基础设施。
|
3月前
|
存储 运维 监控
云原生应用的可观察性:理解、实现与最佳实践
【10月更文挑战第10天】随着云原生技术的发展,可观察性成为确保应用性能和稳定性的重要因素。本文探讨了云原生应用可观察性的概念、实现方法及最佳实践,包括监控、日志记录和分布式追踪的核心组件,以及如何通过选择合适的工具和策略来提升应用的可观察性。
|
4月前
|
Cloud Native 关系型数据库 Serverless
基于阿里云函数计算(FC)x 云原生 API 网关构建生产级别 LLM Chat 应用方案最佳实践
本文带大家了解一下如何使用阿里云Serverless计算产品函数计算构建生产级别的LLM Chat应用。该最佳实践会指导大家基于开源WebChat组件LobeChat和阿里云函数计算(FC)构建企业生产级别LLM Chat应用。实现同一个WebChat中既可以支持自定义的Agent,也支持基于Ollama部署的开源模型场景。
758 27
|
8月前
|
运维 Kubernetes Cloud Native
构建高效云原生运维体系:Kubernetes最佳实践
【5月更文挑战第9天】 在动态和快速演变的云计算环境中,高效的运维是确保应用稳定性与性能的关键。本文将深入探讨在Kubernetes环境下,如何通过一系列最佳实践来构建一个高效且响应灵敏的云原生运维体系。文章不仅涵盖了容器化技术的选择与优化、自动化部署、持续集成/持续交付(CI/CD)流程的整合,还讨论了监控、日志管理以及灾难恢复策略的重要性。这些实践旨在帮助运维团队有效应对微服务架构下的复杂性,确保系统可靠性及业务的连续性。

热门文章

最新文章