【YOLOv5】LabVIEW+TensorRT的yolov5部署实战下

简介: yolov5实现目标检测

前言

上一篇博文给大家介绍了LabVIEW+TensorRT的yolov5部署实战所需的基础内容,比如模型的转换,今天我们来看一下,具体是如何部署的。

LabVIEW+TensorRT的yolov5部署实战(yolov5_trt_img.vi)

如需要查看TensorRT工具包相关vi含义,可查看:https://blog.csdn.net/virobotics/article/details/129492651

1.onnx转化为engine(onnx to engine.vi)

使用onnx_to_engine.vi,将该vi拖拽至前面板空白区域,创建并输入onnx的路径以及engine的路径,type即精度,可选择FP32或FP16,肉眼观看精度无大差别。(一般FP16模型比FP32速度快一倍
image.png

转换的完整程序如下:
image.png

点击运行,等待1~3分钟,模型转换成功,可在刚刚设定的路径中找到我们转化好的mobilenet.engine.

Q:为什么要转换模型,不直接调用ONNX?
A:tensorRT内部加载ONNX后其实是做了一个转换模型的工作,该过程时间长、占用内存巨大。因此不推荐每次初始化都加载ONNX模型,而是加载engine。

2.部署

模型初始化

  1. 加载yolov5s.engine文件
  2. 设置输入输出缓存
    • 输入大小为13640640
    • 输出大小为1
    25200*85
    image.png

yolov5的预处理

  1. LetterBox
  2. blobFromImage,包含如下步骤:
1) img=img/255.0
2) img = img[None] #从(640,640,3)扩充维度至(1,640,640,3)
3) input=img.transpose(0,3,1,2) # BHWC to BCHW

image.png

image.png

模型推理

  1. 推荐使用数据指针作为输入给到run.vi
  2. 数据的大小为13640*640
    image.png

获取推理结果

  1. 循环外初始化一个25200*85的二维数组
  2. 此数组作为Get_Result的输入,另一个输入为index=0
  3. 输出为25200*85的二维数组结果

image.png

后处理

本范例中,后处理方式和使用onnx一样

image.png

完整源码

image.png

运行结果

image.png

项目源码

关注微信公众号:VIRobotics,回复:yolov5_tensorRT 即可获取项目源码

附加说明

操作系统:Windows10
python:3.6及以上
LabVIEW:2018及以上 64位版本
视觉工具包:techforce_lib_opencv_cpu-1.0.0.98.vip
LabVIEW TensorRT工具包:virobotics_lib_tensorrt-1.0.0.22.vip
运行结果所用显卡:RTX3060

总结

以上就是今天要给大家分享的内容,如果有问题可以在评论区里讨论

**如果文章对你有帮助,欢迎✌关注、👍点赞、✌收藏

目录
相关文章
|
1月前
|
机器学习/深度学习 人工智能 计算机视觉
YOLOv11 正式发布!你需要知道什么? 另附:YOLOv8 与YOLOv11 各模型性能比较
YOLOv11是Ultralytics团队推出的最新版本,相比YOLOv10带来了多项改进。主要特点包括:模型架构优化、GPU训练加速、速度提升、参数减少以及更强的适应性和更多任务支持。YOLOv11支持目标检测、图像分割、姿态估计、旋转边界框和图像分类等多种任务,并提供不同尺寸的模型版本,以满足不同应用场景的需求。
YOLOv11 正式发布!你需要知道什么? 另附:YOLOv8 与YOLOv11 各模型性能比较
|
2月前
|
计算机视觉
目标检测笔记(二):测试YOLOv5各模块的推理速度
这篇文章是关于如何测试YOLOv5中不同模块(如SPP和SPPF)的推理速度,并通过代码示例展示了如何进行性能分析。
124 3
|
机器学习/深度学习 人工智能 计算机视觉
【YOLOv8】实战三:基于LabVIEW TensorRT部署YOLOv8
【YOLOv8】实战三:基于LabVIEW TensorRT部署YOLOv8
616 0
【YOLOv8】实战三:基于LabVIEW TensorRT部署YOLOv8
|
机器学习/深度学习 并行计算 计算机视觉
|
PyTorch Go 算法框架/工具
YOLOv8来啦 | 详细解读YOLOv8的改进模块!YOLOv5官方出品YOLOv8,必卷!
YOLOv8来啦 | 详细解读YOLOv8的改进模块!YOLOv5官方出品YOLOv8,必卷!
2762 0
|
人工智能 并行计算 计算机视觉
|
计算机视觉
【YOLOV5-6.x讲解】YOLO5.0VS6.0版本对比+模型设计
【YOLOV5-6.x讲解】YOLO5.0VS6.0版本对比+模型设计
1152 0
【YOLOV5-6.x讲解】YOLO5.0VS6.0版本对比+模型设计
|
机器学习/深度学习 存储 人工智能
深度学习模型部署综述(ONNX/NCNN/OpenVINO/TensorRT)(上)
今天自动驾驶之心很荣幸邀请到逻辑牛分享深度学习部署的入门介绍,带大家盘一盘ONNX、NCNN、OpenVINO等框架的使用场景、框架特点及代码示例。
深度学习模型部署综述(ONNX/NCNN/OpenVINO/TensorRT)(上)
|
机器学习/深度学习 人工智能 自动驾驶
深度学习模型部署综述(ONNX/NCNN/OpenVINO/TensorRT)(下)
今天自动驾驶之心很荣幸邀请到逻辑牛分享深度学习部署的入门介绍,带大家盘一盘ONNX、NCNN、OpenVINO等框架的使用场景、框架特点及代码示例。
深度学习模型部署综述(ONNX/NCNN/OpenVINO/TensorRT)(下)
|
机器学习/深度学习 并行计算 自动驾驶
手把手教学!TensorRT部署实战:YOLOv5的ONNX模型部署
手把手教学!TensorRT部署实战:YOLOv5的ONNX模型部署
手把手教学!TensorRT部署实战:YOLOv5的ONNX模型部署