前言
上一篇博文给大家介绍了LabVIEW+TensorRT的yolov5部署实战所需的基础内容,比如模型的转换,今天我们来看一下,具体是如何部署的。
LabVIEW+TensorRT的yolov5部署实战(yolov5_trt_img.vi)
如需要查看TensorRT工具包相关vi含义,可查看:https://blog.csdn.net/virobotics/article/details/129492651
1.onnx转化为engine(onnx to engine.vi)
使用onnx_to_engine.vi,将该vi拖拽至前面板空白区域,创建并输入onnx的路径以及engine的路径,type即精度,可选择FP32或FP16,肉眼观看精度无大差别。(一般FP16模型比FP32速度快一倍)
转换的完整程序如下:
点击运行,等待1~3分钟,模型转换成功,可在刚刚设定的路径中找到我们转化好的mobilenet.engine.
Q:为什么要转换模型,不直接调用ONNX?
A:tensorRT内部加载ONNX后其实是做了一个转换模型的工作,该过程时间长、占用内存巨大。因此不推荐每次初始化都加载ONNX模型,而是加载engine。
2.部署
模型初始化
- 加载yolov5s.engine文件
- 设置输入输出缓存
• 输入大小为13640640
• 输出大小为125200*85
yolov5的预处理
- LetterBox
- blobFromImage,包含如下步骤:
1) img=img/255.0
2) img = img[None] #从(640,640,3)扩充维度至(1,640,640,3)
3) input=img.transpose(0,3,1,2) # BHWC to BCHW
模型推理
- 推荐使用数据指针作为输入给到run.vi
- 数据的大小为13640*640
获取推理结果
- 循环外初始化一个25200*85的二维数组
- 此数组作为Get_Result的输入,另一个输入为index=0
- 输出为25200*85的二维数组结果
后处理
本范例中,后处理方式和使用onnx一样
完整源码
运行结果
项目源码
关注微信公众号:VIRobotics,回复:yolov5_tensorRT 即可获取项目源码
附加说明
操作系统:Windows10
python:3.6及以上
LabVIEW:2018及以上 64位版本
视觉工具包:techforce_lib_opencv_cpu-1.0.0.98.vip
LabVIEW TensorRT工具包:virobotics_lib_tensorrt-1.0.0.22.vip
运行结果所用显卡:RTX3060
总结
以上就是今天要给大家分享的内容,如果有问题可以在评论区里讨论
**如果文章对你有帮助,欢迎✌关注、👍点赞、✌收藏