Oralce-清除数据的两种思路

简介: Oralce-清除数据的两种思路

20191208102017599.png


数据量很大


思路: 关联的表数据量都很大,获取一次数据时间较长,可以考虑将数据一次性捞出来放到临时表中,只执行一次耗时取数据的查询,放到临时表中,然后通过游标获取临时表中的数据,去对应的表中删除。 同时考虑到业务高峰期,job执行尽量避开业务高峰期。


Warning: 第一次清理数据量比较大的时候,可以通过创建临时表的方式,待第一次清理完成后,后续过期数据数据量小的情况下,可以采用【数据量较少】这种方法加上JOB以及表分析来开展。

create or replace procedure Proc_Clean_Inventory_Data
authid current_user  is
  v_card_number voucher_card.card_number%type;
  v_goods_type_id gm_goods_inst.goods_type_id%type;
  v_goods_stat gm_goods_inst.goods_state%type;
  v_inventory_clean_record_num number(3);
  v_temp_inventory_index_num number(3);
  v_createRecordTableSql varchar2(4000);
  v_createTempTableIndexSql varchar2(4000);
  v_dropTableSql varchar2(4000);
  v_getDataSql varchar2(4000);
  --- create table temp_inventory_4_delete(card_number varchar2(60));
  -- cusrosr card_number collection   
  cursor cur_card_numbers is 
      select card_number from TEMP_INVENTORY_4_DELETE;
begin
  -- set value 
  v_goods_type_id :='V';
  v_goods_stat :='C';
  -- create temp table 
  v_getDataSql := 'create table TEMP_INVENTORY_4_DELETE as select card_number 
         from voucher_card vc
      where vc.card_number in
       (select goods_sn
          from gm_goods_inst
         where GOODS_TYPE_ID = '||chr(39)||v_goods_type_id||chr(39)||'
           and GOODS_STATE = '||chr(39)||v_goods_stat||chr(39)||'
           and state_date < sysdate - 50)'  ;    
   v_dropTableSql := 'drop table TEMP_INVENTORY_4_DELETE';  
   v_createTempTableIndexSql := 'create index IDX_CARD_NUMBER on TEMP_INVENTORY_4_DELETE (CARD_NUMBER)'; 
   v_createRecordTableSql :='create table inventory_clear_record(card_number VARCHAR2(60),create_time DATE)'; 
  -- check exists or not 
  select count(1) into v_inventory_clean_record_num  from user_tables ut where ut.TABLE_NAME = 'INVENTORY_CLEAR_RECORD';
  -- create inventory_clear_record for once
  if v_inventory_clean_record_num = 0 then 
    execute immediate v_createRecordTableSql ;
  end if ; 
  -- drop TEMP_INVENTORY_4_DELETE then recreate 
  execute immediate v_dropTableSql ;
  execute immediate v_getDataSql ;
  -- check exists or not 
  select count(1) into v_temp_inventory_index_num from user_indexes ui where ui.index_name = 'IDX_CARD_NUMBER';
  -- create index for TEMP_INVENTORY_4_DELETE
  if v_temp_inventory_index_num = 0 then 
    execute immediate v_createTempTableIndexSql ;
  end if ; 
  /******Clean expired Data in voucher_card And gm_goods_inst******/
  --open cur_card_numbers,execute the cursor define sql
  open cur_card_numbers;
  --begin to loop
  loop
    -- fetch one record into v_vc_id 
    fetch cur_card_numbers into v_card_number;
    exit when cur_card_numbers%notfound;
    --dbms_output.put_line('v_card_number:' || v_card_number);
    --a.backup one record to voucher_card_old
    insert into voucher_card_old select *  from voucher_card vc where vc.card_number = v_card_number;
    --b.delete one record from voucher_card
    delete from voucher_card vc where  vc.card_number = v_card_number;
    --a.backup one record to gm_goods_inst_old
    insert into gm_goods_inst_old select *  from gm_goods_inst ggi where ggi.goods_sn = v_card_number;
    --b.delete one record from gm_goods_inst
    delete from gm_goods_inst ggi where ggi.goods_sn = v_card_number;
    --d.insert into inventory_clear_record for tracking deleted data
    execute immediate 'insert into inventory_clear_record(card_number,create_time) values(:a,:b)' using v_card_number ,sysdate ;
    --dbms_output.put_line('rowcount:' || cur_card_numbers%rowcount);
    -- 1000 once ,commit
    if  mod(cur_card_numbers%rowcount,1000) = 0  then 
      commit;
      --dbms_output.put_line('batch commit:' || cur_card_numbers%rowcount);  
    end if ;
  end loop;
  --close cursor
  if cur_card_numbers%isopen then
    close cur_card_numbers;
  end if;
   commit;
  --excption 
exception
  when others then
    rollback;
end Proc_Clean_Inventory_Data;

数据量较少

如果数据量较少,可以直接将数据加载到游标中,分多次执行。

create or replace procedure Proc_Clean_Inventory_Data
authid current_user  is
  v_card_number voucher_card.card_number%type;
  v_inventory_clean_record_num number(3);
  v_createRecordTableSql  varchar2(1000);
  -- cusrosr card_number collection   
  cursor cur_card_numbers is 
      select card_number 
         from voucher_card vc
      where vc.card_number in
       (select goods_sn
          from gm_goods_inst
         where GOODS_TYPE_ID = 'V'
           and GOODS_STATE = 'C'
           and state_date < sysdate - 50)
          --and rownum <= 100000  
           ;
begin
   v_createRecordTableSql :='create table inventory_clear_record(card_number VARCHAR2(60),create_time DATE)'; 
  -- check exists or not 
  select count(1) into v_inventory_clean_record_num  from user_tables ut where ut.TABLE_NAME = 'INVENTORY_CLEAR_RECORD';
  -- create inventory_clear_record for once
  if v_inventory_clean_record_num = 0 then 
    execute immediate v_createRecordTableSql ;
  end if ; 
  /******Clean expired Data in voucher_card And gm_goods_inst******/
  --open cur_card_numbers,execute the cursor define sql
  open cur_card_numbers;
  --begin to loop
  loop
    -- fetch one record into v_vc_id 
    fetch cur_card_numbers into v_card_number;
    exit when cur_card_numbers%notfound;
    --dbms_output.put_line('v_card_number:' || v_card_number);
    --a.backup one record to voucher_card_old
    insert into voucher_card_old select *  from voucher_card vc where vc.card_number = v_card_number;
    --b.delete one record from voucher_card
    delete from voucher_card vc where  vc.card_number = v_card_number;
    --a.backup one record to gm_goods_inst_old
    insert into gm_goods_inst_old select *  from gm_goods_inst ggi where ggi.goods_sn = v_card_number;
    --b.delete one record from gm_goods_inst
    delete from gm_goods_inst ggi where ggi.goods_sn = v_card_number;
    --d.insert into inventory_clear_record for tracking deleted data
    execute immediate 'insert into inventory_clear_record(card_number,create_time) values(:a,:b)' using v_card_number ,sysdate ;
    --dbms_output.put_line('rowcount:' || cur_card_numbers%rowcount);
    -- 1000 once ,commit
    if  mod(cur_card_numbers%rowcount,1000) = 0  then 
      commit;
      --dbms_output.put_line('batch commit:' || cur_card_numbers%rowcount);  
    end if ; 
  end loop;
  --close cursor
  if cur_card_numbers%isopen then
    close cur_card_numbers;
  end if;
  commit;
  --excption 
exception
  when others then
    rollback;
end Proc_Clean_Inventory_Data;


配置Job ,定时执行

begin
  sys.dbms_job.submit(job => :job,
                      what => 'proc_clean_inventory_data;',
                      next_date => to_date('09-05-2018 02:00:00', 'dd-mm-yyyy hh24:mi:ss'),
                      interval => 'TRUNC(sysdate+1)+2/24');
  commit;
end;
/


定期进行表分析

我们这两个表是分区表,表分析SQL如下,主要是 GRANULARITY

BEGIN                                
 DBMS_STATS.GATHER_TABLE_STATS(OWNNAME          => 'CRM',
                                   TABNAME          => 'GM_GOODS_INST',
                                   ESTIMATE_PERCENT => DBMS_STATS.AUTO_SAMPLE_SIZE,
                                   METHOD_OPT       => 'for all columns size repeat',
                                   DEGREE           => 4,
                                   GRANULARITY      => 'ALL',
                                   CASCADE          => TRUE,
                                   no_invalidate    => false);
  END;                                 
BEGIN
  DBMS_STATS.GATHER_TABLE_STATS(OWNNAME          => 'CRM',
                                TABNAME          => 'VOUCHER_CARD',
                                ESTIMATE_PERCENT => DBMS_STATS.AUTO_SAMPLE_SIZE,
                                METHOD_OPT       => 'for all columns size repeat',
                                DEGREE           => 4,
                                GRANULARITY      => 'ALL',
                                CASCADE          => TRUE,
                                no_invalidate    => false);
END;


相关文章
|
3天前
|
云安全 人工智能 自然语言处理
|
7天前
|
人工智能 Java API
Java 正式进入 Agentic AI 时代:Spring AI Alibaba 1.1 发布背后的技术演进
Spring AI Alibaba 1.1 正式发布,提供极简方式构建企业级AI智能体。基于ReactAgent核心,支持多智能体协作、上下文工程与生产级管控,助力开发者快速打造可靠、可扩展的智能应用。
719 17
|
10天前
|
数据采集 人工智能 自然语言处理
Meta SAM3开源:让图像分割,听懂你的话
Meta发布并开源SAM 3,首个支持文本或视觉提示的统一图像视频分割模型,可精准分割“红色条纹伞”等开放词汇概念,覆盖400万独特概念,性能达人类水平75%–80%,推动视觉分割新突破。
752 57
Meta SAM3开源:让图像分割,听懂你的话
|
8天前
|
搜索推荐 编译器 Linux
一个可用于企业开发及通用跨平台的Makefile文件
一款适用于企业级开发的通用跨平台Makefile,支持C/C++混合编译、多目标输出(可执行文件、静态/动态库)、Release/Debug版本管理。配置简洁,仅需修改带`MF_CONFIGURE_`前缀的变量,支持脚本化配置与子Makefile管理,具备完善日志、错误提示和跨平台兼容性,附详细文档与示例,便于学习与集成。
329 116
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
AgentEvolver:让智能体系统学会「自我进化」
AgentEvolver 是一个自进化智能体系统,通过自我任务生成、经验导航与反思归因三大机制,推动AI从“被动执行”迈向“主动学习”。它显著提升强化学习效率,在更少参数下实现更强性能,助力智能体持续自我迭代。开源地址:https://github.com/modelscope/AgentEvolver
497 37
|
23天前
|
域名解析 人工智能
【实操攻略】手把手教学,免费领取.CN域名
即日起至2025年12月31日,购买万小智AI建站或云·企业官网,每单可免费领1个.CN域名首年!跟我了解领取攻略吧~
|
2天前
|
Rust 安全
掌握Rust文件读取(从零开始的IO操作指南)
本教程手把手教你用Rust读取文件,涵盖`read_to_string`一次性读取和`BufReader`逐行高效读取,适合初学者掌握安全、高效的Rust文件操作,助你轻松入门系统编程。
150 113

热门文章

最新文章