CVPR2021 GAN详细解读 | AdaConv自适应卷积让你的GAN比AdaIN更看重细节(附论文下载)(二)

简介: CVPR2021 GAN详细解读 | AdaConv自适应卷积让你的GAN比AdaIN更看重细节(附论文下载)(二)

4实验


4.1 风格迁移

与AdaIN的对比如下,可以看出有明显的改善:

image.png

image.png

4.2 生成模型的扩展

基于StarGAN-v2的改进如下:

image.png

实验结果如下:


5参考


[1].Adaptive Convolutions for Structure-Aware Style Transfer

相关文章
|
机器学习/深度学习 编解码 算法
论文阅读笔记 | 目标检测算法——DCN(可变形卷积网络)
论文阅读笔记 | 目标检测算法——DCN(可变形卷积网络)
733 0
论文阅读笔记 | 目标检测算法——DCN(可变形卷积网络)
|
机器学习/深度学习 编解码 计算机视觉
CVPR2021 GAN详细解读 | AdaConv自适应卷积让你的GAN比AdaIN更看重细节(附论文下载)(一)
CVPR2021 GAN详细解读 | AdaConv自适应卷积让你的GAN比AdaIN更看重细节(附论文下载)(一)
463 0
|
机器学习/深度学习 编解码 机器人
NeurIPS 2022 | 百度提出超快Transformer分割模型RTFormer,180FPS+81mIOU(一)
NeurIPS 2022 | 百度提出超快Transformer分割模型RTFormer,180FPS+81mIOU(一)
177 0
|
机器学习/深度学习 编解码 计算机视觉
NeurIPS 2022 | 百度提出超快Transformer分割模型RTFormer,180FPS+81mIOU(二)
NeurIPS 2022 | 百度提出超快Transformer分割模型RTFormer,180FPS+81mIOU(二)
200 0
|
数据挖掘 测试技术 Go
超越YOLOv7 | YOLOv6论文放出,重参+自蒸馏+感知量化+...各种Tricks大放异彩(一)
超越YOLOv7 | YOLOv6论文放出,重参+自蒸馏+感知量化+...各种Tricks大放异彩(一)
260 0
|
异构计算
超越YOLOv7 | YOLOv6论文放出,重参+自蒸馏+感知量化+...各种Tricks大放异彩(二)
超越YOLOv7 | YOLOv6论文放出,重参+自蒸馏+感知量化+...各种Tricks大放异彩(二)
169 0
|
编解码 数据挖掘 计算机视觉
详细解读PVT-v2 | 教你如何提升金字塔Transformer的性能?(附论文下载)(二)
详细解读PVT-v2 | 教你如何提升金字塔Transformer的性能?(附论文下载)(二)
455 0
|
机器学习/深度学习 存储 编解码
详细解读PVT-v2 | 教你如何提升金字塔Transformer的性能?(附论文下载)(一)
详细解读PVT-v2 | 教你如何提升金字塔Transformer的性能?(附论文下载)(一)
598 0
|
编解码 计算机视觉 网络架构
CVPR2021 | 重新思考BiSeNet让语义分割模型速度起飞(文末获取论文)(一)
CVPR2021 | 重新思考BiSeNet让语义分割模型速度起飞(文末获取论文)(一)
339 0
|
数据可视化 计算机视觉
CVPR2021 | 重新思考BiSeNet让语义分割模型速度起飞(文末获取论文)(二)
CVPR2021 | 重新思考BiSeNet让语义分割模型速度起飞(文末获取论文)(二)
128 0