前面在写定积分函数时,自定义了2个常量:圆周率 π 和 自然常数 e
#define E 2.71828182845904523536
#define Pi 3.14159265358979323846
其实<cmath>或<math.h>库里已经“隐藏”着这些常量了,说它“隐藏”的原因是因为仅包括了库还不能直接引用,必须在"#include <cmath>"之前加一行:
#define _USE_MATH_DEFINES
注意:是必须哦,必须在<cmath>之前,哪怕就在前一行加就行;另外:如下所示,红色的四个预定义任选一个都行:
#if !defined(__STRICT_ANSI__) || defined(_XOPEN_SOURCE) || defined(_GNU_SOURCE) || defined(_BSD_SOURCE) || defined(_USE_MATH_DEFINES)
#define M_E 2.7182818284590452354
#define M_LOG2E 1.4426950408889634074
#define M_LOG10E 0.43429448190325182765
#define M_LN2 0.69314718055994530942
#define M_LN10 2.30258509299404568402
#define M_PI 3.14159265358979323846
#define M_PI_2 1.57079632679489661923
#define M_PI_4 0.78539816339744830962
#define M_1_PI 0.31830988618379067154
#define M_2_PI 0.63661977236758134308
#define M_2_SQRTPI 1.12837916709551257390
#define M_SQRT2 1.41421356237309504880
#define M_SQRT1_2 0.70710678118654752440
#endif
常量的名字中如有第二个“_”,则表示除法,比如: M_PI_2 == π/2; M_1_PI == 1/π; M_SQRT1_2 == sqrt(1/2) 【1/2的算术平方根,也即 sqrt(2) /2】;M_2_SQRTPI == 2/sqrt(π) 。
测试代码:
#define _USE_MATH_DEFINES #include <iostream> #include <iomanip> #include <string> #include <sstream> #include <cmath> using namespace std; int main() { stringstream ss; ss << setprecision(22) << M_PI; cout << ss.str() <<endl; cout<< setprecision(22) << M_PI <<endl; cout << 3.14159265358979323846 << endl; cout << "3.14159265358979323846" << endl << endl; ss.str(""); ss << setprecision(22) << M_E; cout << ss.str() <<endl; cout<< setprecision(22) << M_E <<endl; cout << 2.71828182845904523536 << endl; cout << "2.71828182845904523536" << endl; return 0; }
精度也只能到小数点后15位,预定义有20位已足够了。
/* 3.141592653589793115998 3.141592653589793115998 3.141592653589793115998 3.14159265358979323846 2.718281828459045090796 2.718281828459045090796 2.718281828459045090796 2.71828182845904523536 -------------------------------- Process exited after 0.5305 seconds with return value 0 请按任意键继续. . . */
随后又想到了一个更容易更方便的办法,直接用库函数给常量赋值:
#include <iostream> #include <iomanip> #include <cmath> using namespace std; int main() { const double Pi = acos(-1); // arccos(-1) = π const double E = exp(1); // e^1 = e cout << setprecision(20); cout << Pi << endl; cout << E << endl; return 0; }