【详细步骤解析】爬虫小练习——爬取豆瓣Top250电影,最后以csv文件保存,附源码

简介: 【详细步骤解析】爬虫小练习——爬取豆瓣Top250电影,最后以csv文件保存,附源码

豆瓣top250

主要步骤

1.发送请求,根据url地址,然后送请求
2.获取数据,获取服务器返回的响应的内容
3.解析数据:提取想要爬取的内容
4.保存数据:将得到的数据保存为文档

具体实施

#豆瓣top250
import csv                          #引入csv模块
import requests                     #引入请求模块
import time                         #引入时间模块
import parsel                      #导入数据解析模块

#打开一个csv文件并进行操作,将来数据要存储在csv文件中

f=open('豆瓣Top250'+'.csv',mode='a',encoding='utf-8-sig',newline='') #newline,每行写入的时候都不会产生一个空行

#加表头,表的第一列
writer=csv.DictWriter(f,fieldnames=[    
        '电影名' ,
        '导演演员' ,
        '种类',
        '评分' ,
        '评论人数' ,
        '简介',
    ])
writer.writeheader()  #将这些字段写入
number=1 #多页获取,页数

for page in range(0,250,25):
    print(f'正在爬取第{number}页数据')
    number=number+1
    time.sleep(1) #睡眠一秒

    #第一步:发送请求,确定url地址,然后对其发送请求

    #url='https://movie.douban.com/top250'                                                #想要爬取的地址
    url=f'https://movie.douban.com/top250?start={page}&filter='   

    #伪装成浏览器去访问,发送请求,User-Agent:浏览器的标识,基本信息
    headers={                                                                            #注意是键值对
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36 Edg/107.0.1418.35'
    }                                                                                    

    #第二步:获取数据,获取服务器返回的响应的内容

    response=requests.get(url=url,headers=headers)                                       #传递相应的内容,获取服务器返回的响应数据内容

    #第三步:解析数据,提取想要的内容


    selector=parsel.Selector(response.text)                                              #解析css里面的选择器
    lis=selector.css('#content > div > div.article > ol > li')                           #获取所有的li标签

    #找到大的li标签,再通过for循环找出每个小的标签

    for li in lis:
        title_list=li.css('div > div.info > div.hd > a > span:nth-child(1)::text').getall()                  #获取电影名称,这里只获取中文名

        #这里用li而不用Selector是因为从li中获取,这是根据for后面的决定的

        move_info=li.css('div > div.info > div.bd > p:nth-child(1)::text').getall()                          #获取电影的详细信息
        move_comments=li.css('div > div.info > div.bd > div>span::text').getall()                                 #获取电影的评论
        move_simple=li.css('div > div.info > div.bd > p.quote > span::text').getall()                          #获取电影简介

        #getall返回的是列表,所以需要join新的分隔符,连接返回新的字符串
        title=''.join(title_list)
        actor=move_info[0]                                                                                   #导演,演员
        plot=move_info[1]                                                                                    #种类
        scope=move_comments[0]                                                                               #评分
        pnum=move_comments[1]                                                                                #评论人数
        intro=''.join(move_simple)                                                                           #电影简介


        #第四步:保存数据,将得到的数据保存为文档
        #装载数据

        dit={
            '电影名' : title,
            '导演演员' : actor,
            '种类': plot,
            '评分': scope,
            '评论人数': pnum,
            '简介': intro,
        }
        writer.writerow(dit)
相关文章
|
4月前
|
数据采集 运维 监控
爬虫与自动化技术深度解析:从数据采集到智能运维的完整实战指南
本文系统解析爬虫与自动化核心技术,涵盖HTTP请求、数据解析、分布式架构及反爬策略,结合Scrapy、Selenium等框架实战,助力构建高效、稳定、合规的数据采集系统。
939 62
爬虫与自动化技术深度解析:从数据采集到智能运维的完整实战指南
|
4月前
|
数据采集 机器学习/深度学习 人工智能
反爬虫机制深度解析:从基础防御到高级对抗的完整技术实战
本文系统阐述了反爬虫技术的演进与实践,涵盖基础IP限制、User-Agent检测,到验证码、行为分析及AI智能识别等多层防御体系,结合代码实例与架构图,全面解析爬虫攻防博弈,并展望智能化、合规化的发展趋势。
1627 62
反爬虫机制深度解析:从基础防御到高级对抗的完整技术实战
|
6月前
|
数据采集 数据挖掘 测试技术
Go与Python爬虫实战对比:从开发效率到性能瓶颈的深度解析
本文对比了Python与Go在爬虫开发中的特点。Python凭借Scrapy等框架在开发效率和易用性上占优,适合快速开发与中小型项目;而Go凭借高并发和高性能优势,适用于大规模、长期运行的爬虫服务。文章通过代码示例和性能测试,分析了两者在并发能力、错误处理、部署维护等方面的差异,并探讨了未来融合发展的趋势。
543 0
|
8月前
|
数据采集 Java API
深度解析:爬虫技术获取淘宝商品详情并封装为API的全流程应用
本文探讨了如何利用爬虫技术获取淘宝商品详情并封装为API。首先介绍了爬虫的核心原理与工具,包括Python的Requests、BeautifulSoup和Scrapy等库。接着通过实战案例展示了如何分析淘宝商品页面结构、编写爬虫代码以及突破反爬虫策略。随后讲解了如何使用Flask框架将数据封装为API,并部署到服务器供外部访问。最后强调了在开发过程中需遵守法律与道德规范,确保数据使用的合法性和正当性。
|
10月前
|
数据采集 人工智能 监控
40.8K star!让AI帮你读懂整个互联网:Crawl4AI开源爬虫工具深度解析
Crawl4AI 是2025年GitHub上备受瞩目的开源网络爬虫工具,专为AI时代设计。它不仅能抓取网页内容,还能理解页面语义结构,生成适配大语言模型的训练数据格式。上线半年获4万+星标,应用于1200+AI项目。其功能亮点包括智能内容提取引擎、AI就绪数据管道和企业级特性,支持动态页面处理、多语言识别及分布式部署。技术架构基于Python 3.10与Scrapy框架,性能卓越,适用于AI训练数据采集、行业情报监控等场景。相比Scrapy、BeautifulSoup等传统工具,Crawl4AI在动态页面支持、PDF解析和语义分块方面更具优势
3623 0
40.8K star!让AI帮你读懂整个互联网:Crawl4AI开源爬虫工具深度解析
|
4月前
|
数据采集 存储 JavaScript
解析Python爬虫中的Cookies和Session管理
Cookies与Session是Python爬虫中实现状态保持的核心。Cookies由服务器发送、客户端存储,用于标识用户;Session则通过唯一ID在服务端记录会话信息。二者协同实现登录模拟与数据持久化。
|
6月前
|
数据采集 存储 Web App开发
Python爬虫库性能与选型实战指南:从需求到落地的全链路解析
本文深入解析Python爬虫库的性能与选型策略,涵盖需求分析、技术评估与实战案例,助你构建高效稳定的数据采集系统。
534 0
|
7月前
|
数据采集 存储 NoSQL
Python爬虫案例:Scrapy+XPath解析当当网网页结构
Python爬虫案例:Scrapy+XPath解析当当网网页结构
|
7月前
|
数据采集 机器学习/深度学习 边缘计算
Python爬虫动态IP代理报错全解析:从问题定位到实战优化
本文详解爬虫代理设置常见报错场景及解决方案,涵盖IP失效、403封禁、性能瓶颈等问题,提供动态IP代理的12种核心处理方案及完整代码实现,助力提升爬虫系统稳定性。
459 0

推荐镜像

更多
  • DNS