一文掌握 Go 并发模式 Context 上下文

简介: 本文详细介绍了 Go 语言中的 Context 上下文,包括核心方法、创建方式以及应用场景等方面的内容。

作者:陈明勇

个人网站:https://chenmingyong.cn

文章持续更新,如果本文能让您有所收获,欢迎关注本号。

微信阅读可搜《Go技术干货》。这篇文章已被收录于 GitHub https://github.com/chenmingyong0423/blog,欢迎大家 Star 催更并持续关注。


Go version → 1.20.4

前言

Package context defines the Context type, which carries deadlines, cancellation signals, and other request-scoped values across API boundaries and between processes.[1]

Go1.7 引入了 context 包,目的是为了在不同的 goroutine 之间或跨 API 边界传递超时、取消信号和其他请求范围内的值(与该请求相关的值。这些值可能包括用户身份信息、请求处理日志、跟踪信息等等)。

Go 的日常开发中,Context 上下文对象无处不在,无论是处理网络请求、数据库操作还是调用 RPC 等场景下,都会使用到 Context。那么,你真的了解它吗?熟悉它的正确用法吗?了解它的使用注意事项吗?喝一杯你最喜欢的饮料,随着本文一探究竟吧。

Context 接口

context 包在提供了一个用于跨 API 边界传递超时、取消信号和其他请求范围值的通用数据结构。它定义了一个名为 Context 的接口,该接口包含一些方法,用于在多个 Goroutine 和函数之间传递请求范围内的信息。

以下是 Context 接口的定义:

typeContextinterface {
Deadline() (deadlinetime.Time, okbool)
Done() <-chanstruct{}
Err() errorValue(keyany) any}

Context 的核心方法

Context 的核心方法.jpg

Context 接口中有四个核心方法:Deadline()Done()Err()Value()

Deadline()

Deadline() (deadline time.Time, ok bool) 方法返回 Context 的截止时间,表示在这个时间点之后,Context 会被自动取消。如果 Context 没有设置截止时间,该方法返回一个零值 time.Time 和一个布尔值 false

deadline, ok :=ctx.Deadline()
ifok {
// Context 有截止时间} else {
// Context 没有截止时间}

Done()

Done() 方法返回一个只读通道,当 Context 被取消时,该通道会被关闭。你可以通过监听这个通道来检测 Context 是否被取消。如果 Context 永不取消,则返回 nil

select {
case<-ctx.Done():
// Context 已取消default:
// Context 尚未取消}


Err()

Err() 方法返回一个 error 值,表示 Context 被取消时产生的错误。如果 Context 尚未取消,该方法返回 nil

iferr :=ctx.Err(); err!=nil {
// Context 已取消,处理错误}

Value()

Value(key any) any 方法返回与 Context 关联的键值对,一般用于在 Goroutine 之间传递请求范围内的信息。如果没有关联的值,则返回 nil

value :=ctx.Value(key)
ifvalue!=nil {
// 存在关联的值}

Context 的创建方式

Context 的创建方式.jpg

context.Background()

context.Background() 函数返回一个非 nil 的空 Context,它没有携带任何的值,也没有取消和超时信号。通常作为根 Context 使用。

ctx :=context.Background()
context.TODO()

context.TODO() 函数返回一个非 nil 的空 Context,它没有携带任何的值,也没有取消和超时信号。虽然它的返回结果和 context.Background() 函数一样,但是它们的使用场景是不一样的,如果不确定使用哪个上下文时,可以使用 context.TODO()

go

复制代码

ctx := context.TODO()

context.WithValue()

context.WithValue(parent Context, key, val any) 函数接收一个父 Context 和一个键值对 keyval,返回一个新的子 Context,并在其中添加一个 key-value 数据对。

go

复制代码

ctx := context.WithValue(parentCtx, "username", "陈明勇")

context.WithCancel()

context.WithCancel(parent Context) (ctx Context, cancel CancelFunc) 函数接收一个父 Context,返回一个新的子 Context 和一个取消函数,当取消函数被调用时,子 Context 会被取消,同时会向子 Context 关联的 Done() 通道发送取消信号,届时其衍生的子孙 Context 都会被取消。这个函数适用于手动取消操作的场景。

ctx, cancelFunc :=context.WithCancel(parentCtx)  
defercancelFunc()


context.WithCancelCause() 与 context.Cause()

context.WithCancelCause(parent Context) (ctx Context, cancel CancelCauseFunc) 函数是 Go 1.20 版本才新增的,其功能类似于 context.WithCancel(),但是它可以设置额外的取消原因,也就是 error 信息,返回的 cancel 函数被调用时,需传入一个 error 参数。

ctx, cancelFunc :=context.WithCancelCause(parentCtx)
defercancelFunc(errors.New("原因"))

context.Cause(c Context) error 函数用于返回取消 Context 的原因,即错误值 error。如果是通过 context.WithCancelCause() 函数返回的取消函数 cancelFunc(myErr) 进行的取消操作,我们可以获取到 myErr 的值。否则,我们将得到与 c.Err() 相同的返回值。如果 Context 尚未被取消,将返回 nil

err :=context.Cause(ctx)

context.WithDeadline()

context.WithDeadline(parent Context, d time.Time) (Context, CancelFunc) 函数接收一个父 Context 和一个截止时间作为参数,返回一个新的子 Context。当截止时间到达时,子 Context 其衍生的子孙 Context 会被自动取消。这个函数适用于需要在特定时间点取消操作的场景。

deadline :=time.Now().Add(time.Second*2)
ctx, cancelFunc :=context.WithTimeout(parentCtx, deadline)
defercancelFunc()

context.WithTimeout()

context.WithTimeout(parent Context, timeout time.Duration) (Context, CancelFunc) 函数和 context.WithDeadline() 函数的功能是一样的,其底层会调用 WithDeadline() 函数,只不过其第二个参数接收的是一个超时时间,而不是截止时间。这个函数适用于需要在一段时间后取消操作的场景。

ctx, cancelFunc :=context.WithTimeout(parentCtx, time.Second*2)
defercancelFunc()

Context 的使用场景

传递共享数据

编写中间件函数,用于向 HTTP 处理链中添加处理请求 ID 的功能。

typekeyintconst (
requestIDKeykey=iota)
funcWithRequestId(nexthttp.Handler) http.Handler {
returnhttp.HandlerFunc(func(rwhttp.ResponseWriter, req*http.Request) {
// 从请求中提取请求ID和用户信息requestID :=req.Header.Get("X-Request-ID")
// 创建子 context,并添加一个请求 Id 的信息ctx :=context.WithValue(req.Context(), requestIDKey, requestID)
// 创建一个新的请求,设置新 ctxreq=req.WithContext(ctx)
// 将带有请求 ID 的上下文传递给下一个处理器next.ServeHTTP(rw, req)
   })
}


首先,我们从请求的头部中提取请求 ID。然后使用 context.WithValue 创建一个子上下文,并将请求 ID 作为键值对存储在子上下文中。接着,我们创建一个新的请求对象,并将子上下文设置为新请求的上下文。最后,我们将带有请求 ID 的上下文传递给下一个处理器。 这样,通过使用 WithRequestId 中间件函数,我们可以在处理请求的过程中方便地获取和使用请求 ID,例如在 日志记录、跟踪和调试等方面

传递取消信号,结束任务

启动一个工作协程,接收到取消信号就停止工作。

packagemainimport (
"context""fmt""time")
funcmain() {
ctx, cancelFunc :=context.WithCancel(context.Background())
goWorking(ctx)
time.Sleep(3*time.Second)
cancelFunc()
// 等待一段时间,以确保工作协程接收到取消信号并退出time.Sleep(1*time.Second)
}
funcWorking(ctxcontext.Context) {
for {
select {
case<-ctx.Done():
fmt.Println("下班啦...")
returndefault:
fmt.Println("陈明勇正在工作中...")
      }
   }
}


执行结果

······
······
陈明勇正在工作中...
陈明勇正在工作中...
陈明勇正在工作中...
陈明勇正在工作中...
陈明勇正在工作中...
下班啦...


在上面的示例中,我们创建了一个 Working 函数,它会不断执行工作任务。我们使用 context.WithCancel 创建了一个上下文 ctx 和一个取消函数 cancelFunc。然后,启动了一个工作协程,并将上下文传递给它。

在主函数中,需要等待一段时间(3 秒)模拟业务逻辑的执行。然后,调用取消函数 cancelFunc,通知工作协程停止工作。工作协程在每次循环中都会检查上下文的状态,一旦接收到取消信号,就会退出循环。

最后,等待一段时间(1 秒),以确保工作协程接收到取消信号并退出。

超时控制

模拟耗时操作,超时控制。

packagemainimport (
"context""fmt""time")
funcmain() {
// 使用 WithTimeout 创建一个带有超时的上下文对象ctx, cancel :=context.WithTimeout(context.Background(), 3*time.Second)
defercancel()
// 在另一个 goroutine 中执行耗时操作gofunc() {
// 模拟一个耗时的操作,例如数据库查询time.Sleep(5*time.Second)
cancel()
   }()
select {
case<-ctx.Done():
fmt.Println("操作已超时")
case<-time.After(10*time.Second):
fmt.Println("操作完成")
   }
}

执行结果

操作已超时


在上面的例子中,首先使用 context.WithTimeout() 创建了一个带有 3 秒超时的上下文对象 ctx, cancel := context.WithTimeout(ctx, 3*time.Second)

接下来,在一个新的 goroutine 中执行一个模拟的耗时操作,例如等待 5 秒钟。当耗时操作完成后,调用 cancel() 方法来取消超时上下文。

最后,在主 goroutine 中使用 select 语句等待超时上下文的完成信号。如果在 3 秒内耗时操作完成,那么会输出 "操作完成"。如果超过了 3 秒仍未完成,超时上下文的 Done() 通道会被关闭,输出 "操作已超时"。

使用 Context 的一些规则

使用 Context 上下文,应该遵循以下规则,以保持包之间的接口一致,并使静态分析工具能够检查上下文传播:

  • 不要在结构类型中加入 Context 参数,而是将它显式地传递给需要它的每个函数,并且它应该是第一个参数,通常命名为 ctx:
funcDoSomething(ctxcontext.Context, argArg) error {
// ... use ctx ...}
  • 即使函数允许,也不要传递 nil Context。如果不确定要使用哪个 Context,建议使用 context.TODO()
  • 仅将 Context 的值用于传输进程和 api 的请求作用域数据,不能用于向函数传递可选参数。[1]

小结

本文详细介绍了 Go 语言中的 Context 上下文,通过阅读本文,相信你们对 Context 的功能和使用场景有所了解。同时,你们也应该能够根据实际需求选择最合适的 Context 创建方式,并且根据规则,正确、高效地使用它。


参考资料

[1] https://pkg.go.dev/context@go1.20.4


目录
相关文章
|
2月前
|
存储 负载均衡 监控
如何利用Go语言的高效性、并发支持、简洁性和跨平台性等优势,通过合理设计架构、实现负载均衡、构建容错机制、建立监控体系、优化数据存储及实施服务治理等步骤,打造稳定可靠的服务架构。
在数字化时代,构建高可靠性服务架构至关重要。本文探讨了如何利用Go语言的高效性、并发支持、简洁性和跨平台性等优势,通过合理设计架构、实现负载均衡、构建容错机制、建立监控体系、优化数据存储及实施服务治理等步骤,打造稳定可靠的服务架构。
49 1
|
2月前
|
Go 调度 开发者
探索Go语言中的并发模式:goroutine与channel
在本文中,我们将深入探讨Go语言中的核心并发特性——goroutine和channel。不同于传统的并发模型,Go语言的并发机制以其简洁性和高效性著称。本文将通过实际代码示例,展示如何利用goroutine实现轻量级的并发执行,以及如何通过channel安全地在goroutine之间传递数据。摘要部分将概述这些概念,并提示读者本文将提供哪些具体的技术洞见。
|
3月前
|
Java 大数据 Go
Go语言:高效并发的编程新星
【10月更文挑战第21】Go语言:高效并发的编程新星
63 7
|
2月前
|
并行计算 安全 Go
Go语言的并发特性
【10月更文挑战第26天】Go语言的并发特性
21 1
|
3月前
|
安全 Go 调度
探索Go语言的并发模式:协程与通道的协同作用
Go语言以其并发能力闻名于世,而协程(goroutine)和通道(channel)是实现并发的两大利器。本文将深入了解Go语言中协程的轻量级特性,探讨如何利用通道进行协程间的安全通信,并通过实际案例演示如何将这两者结合起来,构建高效且可靠的并发系统。
|
3月前
|
安全 程序员 Go
深入浅出Go语言的并发之道
在本文中,我们将探索Go语言如何优雅地处理并发编程。通过对比传统多线程模型,我们将揭示Go语言独特的goroutine和channel机制是如何简化并发编程,并提高程序的效率和稳定性。本文不涉及复杂的技术术语,而是用通俗易懂的语言,结合生动的比喻,让读者能够轻松理解Go语言并发编程的核心概念。
|
1月前
|
并行计算 安全 Go
Go语言中的并发编程:掌握goroutines和channels####
本文深入探讨了Go语言中并发编程的核心概念——goroutine和channel。不同于传统的线程模型,Go通过轻量级的goroutine和通信机制channel,实现了高效的并发处理。我们将从基础概念开始,逐步深入到实际应用案例,揭示如何在Go语言中优雅地实现并发控制和数据同步。 ####
|
2月前
|
存储 Go 开发者
Go语言中的并发编程与通道(Channel)的深度探索
本文旨在深入探讨Go语言中并发编程的核心概念和实践,特别是通道(Channel)的使用。通过分析Goroutines和Channels的基本工作原理,我们将了解如何在Go语言中高效地实现并行任务处理。本文不仅介绍了基础语法和用法,还深入讨论了高级特性如缓冲通道、选择性接收以及超时控制等,旨在为读者提供一个全面的并发编程视角。
|
2月前
|
安全 Serverless Go
Go语言中的并发编程:深入理解与实践####
本文旨在为读者提供一个关于Go语言并发编程的全面指南。我们将从并发的基本概念讲起,逐步深入到Go语言特有的goroutine和channel机制,探讨它们如何简化多线程编程的复杂性。通过实例演示和代码分析,本文将揭示Go语言在处理并发任务时的优势,以及如何在实际项目中高效利用这些特性来提升性能和响应速度。无论你是Go语言的初学者还是有一定经验的开发者,本文都将为你提供有价值的见解和实用的技巧。 ####
|
2月前
|
Go 调度 开发者
Go语言中的并发编程:深入理解goroutines和channels####
本文旨在探讨Go语言中并发编程的核心概念——goroutines和channels。通过分析它们的工作原理、使用场景以及最佳实践,帮助开发者更好地理解和运用这两种强大的工具来构建高效、可扩展的应用程序。文章还将涵盖一些常见的陷阱和解决方案,以确保在实际应用中能够避免潜在的问题。 ####