AIGC背后的技术分析 | 机器学习中的卷积神经网络

简介: 卷积神经网络(convolutional neural network)是一种前馈神经网络, 广泛应用于图像识别领域。进行图像识别任务时,若使用传统的全连接神经网络,网络的第一层参数会非常多。针对此问题,人们考虑是否能够结合图像识别任务的特点来简化全连接神经网络。

640.jpg


通过观察,研究者发现了以下3条性质。

① 某些模式总是存在于局部区域。例如,熊猫眼睛的特点可以作为识别熊猫的一种模式,包含熊猫眼睛的区域比整张图像小很多。要识别出这些模式,一个神经元并不需要与整张图像的所有像素相连,只需要与某些小区域相连接。连接到小的区域意味着少的网络参数。

② 相同的模式会出现在多个区域,也就是同一特征可以出现在不同图像的不同位置。例如,不同图像中熊猫的眼睛位置有所不同。图1展示了不同图像中熊猫眼睛的位置。这意味着隐含层中很多神经元做的事情几乎是一样的,都是在捕获熊猫眼睛的特点。因此,不同的神经元可以共享相同的参数,共享参数可以有效减少参数的数量。

640.png


图1不同图像中熊猫眼睛的位置

③ 对图像中的像素做下采样(subsampling)不会影响物体的识别。对一张图像进行下采样,可以得到原始图像的缩略图,而图像中要识别的模式并不会受到很大影响,可参考图2展示的对图像进行下采样之后的效果。对图像进行下采样可以减小图像的大小,进而减少神经网络的参数。

640.png


图2 图像进行下采样之后的效果

卷积神经网络就是参考了以上三条性质,对原始全连接神经网络结构进行调整与设计得到的。卷积神经网络由一个或多个卷积层(convolutional layer)与一个或多个全连接层构建,其中图像经过卷积层之后获得的表示通常会进行下采样操作,也称为池化操作。卷积神经网络进行池化操作的层称为池化层(pooling layer)。下面具体介绍卷积神经网络中的卷积层与池化层。

假设输入是M ×M ×R 的图像,其中M 表示图像的长和宽(图像的长和宽也可以不等),R 是图像的通道(channel)数。例如,对于彩色RGB图像,R=3,对于灰度图像,R=1。

卷积层与一般的全连接层不同,不再使用权重矩阵表示所有神经元节点在相邻网络层之间的一一对应关系,而是使用多组共享参数来构建两个网络层之间的联系。在卷积网络中,共享参数称为卷积核。一个卷积层可以使用K 个大小为N ×N ×R 的不同卷积核,其中N <M 。经过一层卷积操作之后,输入图像会转化成K 个大小为(M -N +1)×(M -N +1)的矩阵,通道数变为K 。图3给出了卷积操作的原理示意图。如图所示,卷积操作的具体计算如下:

(1)在所有通道的数据张量(图像)中选取与对应的卷积核W(k)尺寸相同的窗口Xi(k),并与之进行逐点乘运算W(k)⊙Xi(k),k=1,2。
(2)把对应张量W(r)⊙Xi(r)中的所有元素求和,得到每个窗口的标量表示。

(3)窗口在原数据张量中滑动,可以得到一个(M-N+1)×(M-N+1)的矩阵,矩阵的每一个元素对应每个窗口的标量表示。由于使用了个不同卷积核,将会得到个矩阵的新张量。

640.png


图3 卷积操作的原理示意图

可以发现,经过卷积操作之后,数据的长宽尺寸会变小,如果要保持卷积前后的长宽不变,需要对原数据进行填补操作,即在原数据矩阵的周围填补0。假设卷积核的尺寸为,当填补的长和宽为时,可以保证数据在经过卷积操作后长宽不变。卷积核的长和宽通常设置为奇数,因为这样填补的长和宽都是偶数,可以平均分配在数据矩阵的周围。

池化层通常接在卷积层之后。池化操作是对数据进行下采样,通常是在的连续区域上取均值池化或者取最大值池化,通常不超过5。通常在池化层之前或者之后增加一个偏置项和非线性激活函数。

卷积神经网络可以使用多个卷积层和池化层的组合,最后将所有通道的数据作为向量输入全连接层,为实现具体任务构建端到端的映射。卷积神经网络参数的求解使用反向传播算法。总的来说,卷积神经的结构设计利用了图像或其他结构化数据的多维结构,通过引入共享的卷积核以及池化等操作,捕获了数据中模式的位移不变性,减少了网络的参数。

目录
相关文章
|
1天前
|
SQL 安全 算法
网络安全与信息安全:防御前线的技术与意识
【5月更文挑战第4天】在数字化时代,网络安全和信息安全已成为维护网络环境稳定的关键。本文深入探讨了网络安全漏洞的成因、加密技术的应用以及提升安全意识的重要性,旨在为读者提供全面的安全防护策略。通过对常见安全威胁的分析,我们展示了如何运用现代加密技术和安全机制来保护数据和隐私。同时,文章强调了培养个人和组织的安全意识对于构建安全防线的核心作用。
9 0
|
1天前
|
机器学习/深度学习 并行计算 测试技术
BiTCN:基于卷积网络的多元时间序列预测
该文探讨了时间序列预测中模型架构的选择,指出尽管MLP和Transformer模型常见,但CNN在预测领域的应用较少。BiTCN是一种利用两个时间卷积网络来编码历史和未来协变量的模型,提出于《Parameter-efficient deep probabilistic forecasting》(2023年3月)。它包含多个由扩张卷积、GELU激活函数、dropout和全连接层组成的临时块,有效地处理序列数据。实验表明,BiTCN在具有外生特征的预测任务中表现优于N-HiTS和PatchTST。BiTCN的效率和性能展示了CNN在时间序列预测中的潜力。
11 1
|
2天前
|
存储 安全 网络安全
网络安全与信息安全:防御前线的技术与意识
【5月更文挑战第3天】 在数字化时代,网络安全和信息安全已成为维护社会稳定、保护个人隐私和企业资产的重要领域。本文深入探讨了网络安全漏洞的成因与影响,加密技术的最新发展以及提升安全意识的必要性。通过对现有威胁的分析,我们强调了构建多层次防御策略的重要性,并提出了相应的技术解决方案和管理措施。
|
3天前
|
机器学习/深度学习 人工智能 算法
【AI 初识】什么是卷积神经网络 (CNN)?
【5月更文挑战第2天】【AI 初识】什么是卷积神经网络 (CNN)?
|
3天前
|
机器学习/深度学习 自然语言处理 搜索推荐
|
3天前
|
存储 SQL 安全
网络安全与信息安全:防御前线的关键技术与策略
【5月更文挑战第2天】 在数字化时代,数据成为了新的货币,而网络安全则是保护这些宝贵资产不受威胁的盾牌。本文将深入探讨网络安全漏洞的本质,分析加密技术如何成为防御体系的核心,并强调提升个人和企业的安全意识在构建坚固防线中的重要性。通过技术性解析和实践策略的分享,旨在为读者提供一套综合性的网络与信息安全解决方案。
|
4天前
|
安全 网络安全
网络安全攻防实战演练:技术探索与实践
【5月更文挑战第1天】网络安全攻防实战演练,通过模拟攻击与防御,提升组织应对网络安全威胁的能力。演练包括准备、攻击、防御和总结四个阶段,涉及环境搭建、攻击技术应用、防御措施执行及后期评估。此类演练有助于检验安全防护能力,提升应急响应速度,暴露系统隐患,加强团队协作,是保障网络安全的关键实践。
|
5天前
|
机器学习/深度学习 自动驾驶 安全
基于深度学习的图像识别技术在自动驾驶系统中的应用网络安全与信息安全:防御前线的关键技术与意识
【4月更文挑战第30天】随着人工智能技术的飞速发展,深度学习已成为推动多个技术领域革新的核心力量。特别是在图像识别领域,深度学习模型已展现出超越传统算法的性能。在自动驾驶系统中,准确的图像识别是确保行车安全和高效导航的基础。本文将探讨深度学习在自动驾驶中图像识别的应用,分析关键技术挑战,并提出未来的发展方向。
|
5天前
|
存储 安全 网络安全
网络安全与信息安全:防御前线的技术与意识
【4月更文挑战第30天】在数字化时代,数据成为了新的货币,而网络安全则是保护这些资产的保险箱。本文深入探讨了网络安全漏洞的成因、加密技术的进展以及提升安全意识的重要性,旨在为读者提供一道防线,帮助他们在网络空间中更安全地存储、传输和处理信息。通过分析当前的威胁景观,我们讨论了如何通过技术手段和行为改变来增强个人和组织的网络防护能力。
|
5天前
|
SQL 安全 算法
网络安全与信息安全:防御前线的技术创新与意识提升
【4月更文挑战第30天】在数字化时代,网络安全和信息安全已成为维护国家安全、企业利益和个人隐私的关键。本文深入探讨了网络安全漏洞的形成机理及其对信息系统的潜在威胁,同时详细分析了加密技术作为信息保护的重要手段的原理和应用。此外,文章还强调了安全意识在构建坚固网络防线中的核心作用,并提出了提升公众和企业员工安全意识的策略。通过综合技术性措施与人文教育,旨在为读者提供一个全面的信息安全防护指南。

热门文章

最新文章