【YOLOV5-6.x讲解】常用工具类 models/common.py

简介: 【YOLOV5-6.x讲解】常用工具类 models/common.py

主干目录:


【YOLOV5-6.x 版本讲解】整体项目代码注释导航


现在YOLOV5已经更新到6.X版本,现在网上很多还停留在5.X的源码注释上,因此特开一贴传承开源精神!5.X版本的可以看其他大佬的帖子本文章主要从6.X版本出发,主要解决6.X版本的项目注释与代码分析!......

https://blog.csdn.net/qq_39237205/article/details/125729662

以下内容为本栏目的一部分,更多关注以上链接目录,查找YOLOV5的更多信息

祝福你朋友早日发表sci!


# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
        Common modules
        这个模块存放着yolov5网络搭建常见Common模块。
"""
import json
import math # 数学函数模块
import platform
import warnings
from collections import OrderedDict, namedtuple
from copy import copy   #  数据拷贝模块 分浅拷贝和深拷贝
from pathlib import Path    # Path将str转换为Path对象 使字符串路径易于操作的模块
import cv2
import numpy as np  # numpy数组操作模块
import pandas as pd # panda数组操作模块
import requests  # Python的HTTP客户端库
import torch      # pytorch深度学习框架
import torch.nn as nn   # 专门为神经网络设计的模块化接口
import yaml
from PIL import Image   # 图像基础操作模块
from torch.cuda import amp  # 混合精度训练模块
from utils.datasets import exif_transpose, letterbox
from utils.general import (LOGGER, check_requirements, check_suffix, check_version, colorstr, increment_path,
                           make_divisible, non_max_suppression, scale_coords, xywh2xyxy, xyxy2xywh)
from utils.plots import Annotator, colors, save_one_box
from utils.torch_utils import copy_attr, time_sync
# ============================================= 核心模块 =====================================
def autopad(k, p=None):  # kernel, padding
    """
        用于Conv函数和Classify函数中,
        为same卷积或same池化作自动扩充(0填充)  Pad to 'same'
        根据卷积核大小k自动计算卷积核padding数(0填充)
        v5中只有两种卷积:
           1、下采样卷积:conv3x3 s=2 p=k//2=1
           2、feature size不变的卷积:conv1x1 s=1 p=k//2=1
        :params k: 卷积核的kernel_size
        :return p: 自动计算的需要pad值(0填充)
    """
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p
class Conv(nn.Module):
    # Standard convolution
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
        """
               Standard convolution  conv+BN+act
               :params c1: 输入的channel值
               :params c2: 输出的channel值
               :params k: 卷积的kernel_size
               :params s: 卷积的stride
               :params p: 卷积的padding  一般是None  可以通过autopad自行计算需要pad的padding数
               :params g: 卷积的groups数  =1就是普通的卷积  >1就是深度可分离卷积,也就是分组卷积
               :params act: 激活函数类型   True就是SiLU()/Swish   False就是不使用激活函数
                            类型是nn.Module就使用传进来的激活函数类型
               """
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        # Todo 修改激活函数
        # self.act = nn.Identity() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
        # self.act = nn.Tanh() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
        # self.act = nn.Sigmoid() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
        # self.act = nn.ReLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
        # self.act = nn.LeakyReLU(0.1) if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
        # self.act = nn.Hardswish() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
        self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
    def forward(self, x):
        return self.act(self.bn(self.conv(x)))
    def forward_fuse(self, x):
        """
            用于Model类的fuse函数
            前向融合conv+bn计算 加速推理 一般用于测试/验证阶段
        """
        return self.act(self.conv(x))
class Focus(nn.Module):
    # Focus wh information into c-space
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
        """
              理论:从高分辨率图像中,周期性的抽出像素点重构到低分辨率图像中,即将图像相邻的四个位置进行堆叠,
                  聚焦wh维度信息到c通道空,提高每个点感受野,并减少原始信息的丢失,该模块的设计主要是减少计算量加快速度。
              Focus wh information into c-space 把宽度w和高度h的信息整合到c空间中
              先做4个slice 再concat 最后再做Conv
              slice后 (b,c1,w,h) -> 分成4个slice 每个slice(b,c1,w/2,h/2)
              concat(dim=1)后 4个slice(b,c1,w/2,h/2)) -> (b,4c1,w/2,h/2)
              conv后 (b,4c1,w/2,h/2) -> (b,c2,w/2,h/2)
              :params c1: slice后的channel
              :params c2: Focus最终输出的channel
              :params k: 最后卷积的kernel
              :params s: 最后卷积的stride
              :params p: 最后卷积的padding
              :params g: 最后卷积的分组情况  =1普通卷积  >1深度可分离卷积
              :params act: bool激活函数类型  默认True:SiLU()/Swish  False:不用激活函数
       """
        super().__init__()
        self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
        # self.contract = Contract(gain=2)  # 也可以调用Contract函数实现slice操作
    def forward(self, x):  # x(b,c,w,h) -> y(b,4c,w/2,h/2)
        # x(b,c,w,h) -> y(b,4c,w/2,h/2)  有点像做了个下采样
        return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))
        # return self.conv(self.contract(x))
class Bottleneck(nn.Module):
    # 这个模式是一个标准的 bottleneck 模块,非常简单,就是由一些 1x1conv、3x3conv、残差块组成
    # Standard bottleneck
    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, shortcut, groups, expansion
        """
                在BottleneckCSP和yolo.py的parse_model中调用
                Standard bottleneck  Conv+Conv+shortcut
                :params c1: 第一个卷积的输入channel
                :params c2: 第二个卷积的输出channel
                :params shortcut: bool 是否有shortcut连接 默认是True
                :params g: 卷积分组的个数  =1就是普通卷积  >1就是深度可分离卷积
                :params e: expansion ratio  e*c2就是第一个卷积的输出channel=第二个卷积的输入channel
        """
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_, c2, 3, 1, g=g)
        self.add = shortcut and c1 == c2
    def forward(self, x):
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
class BottleneckCSP(nn.Module):
    # 这个模块和上面yolov5s中的C3模块等效
    # 如果要用的话直接在yolov5s.yaml文件中讲C3改成BottleneckCSP即可,但是一般来说不用改,因为C3更好。
    # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        """
               CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
               :params c1: 整个BottleneckCSP的输入channel
               :params c2: 整个BottleneckCSP的输出channel
               :params n: 有n个Bottleneck
               :params shortcut: bool Bottleneck中是否有shortcut,默认True
               :params g: Bottleneck中的3x3卷积类型  =1普通卷积  >1深度可分离卷积
               :params e: expansion ratio c2xe=中间其他所有层的卷积核个数/中间所有层的输入输出channel数
       """
        # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
        self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
        self.cv4 = Conv(2 * c_, c2, 1, 1)
        self.bn = nn.BatchNorm2d(2 * c_)  # applied to cat(cv2, cv3)
        self.act = nn.SiLU()
        # 叠加n次Bottleneck
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
    def forward(self, x):
        y1 = self.cv3(self.m(self.cv1(x)))
        y2 = self.cv2(x)
        return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))
class C3(nn.Module):
    # CSP Bottleneck with 3 convolutions
    # 这个模块是一种简化版的BottleneckCSP,因为除了Bottleneck部分只有3个卷积,可以减少参数,所以取名C3。
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
        # ch_in, ch_out, number, shortcut, groups, expansion
        """
                在C3TR模块和yolo.py的parse_model模块调用
                CSP Bottleneck with 3 convolutions
                :params c1: 整个BottleneckCSP的输入channel
                :params c2: 整个BottleneckCSP的输出channel
                :params n: 有n个Bottleneck
                :params shortcut: bool Bottleneck中是否有shortcut,默认True
                :params g: Bottleneck中的3x3卷积类型  =1普通卷积  >1深度可分离卷积
                :params e: expansion ratio c2xe = 中间其他所有层的卷积核个数/中间所有层的输入输出channel数
        """
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # act=FReLU(c2)
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
        # 实验性 CrossConv 目标位置 models/experimental.py
        # self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)])
    def forward(self, x):
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
class SPP(nn.Module):
    # 这个模块的主要目的是为了将更多不同分辨率的特征进行融合,得到更多的信息。
    # Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729
    def __init__(self, c1, c2, k=(5, 9, 13)):
        """
                空间金字塔池化 Spatial pyramid pooling layer used in YOLOv3-SPP
                :params c1: SPP模块的输入channel
                :params c2: SPP模块的输出channel
                :params k: 保存着三个maxpool的卷积核大小 默认是(5, 9, 13)
        """
        super().__init__()
        c_ = c1 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)   # 第一层卷积
        self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)    # 最后一层卷积  +1是因为有len(k)+1个输入
        self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
    def forward(self, x):
        x = self.cv1(x)
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')  # suppress torch 1.9.0 max_pool2d() warning
            return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
class Concat(nn.Module):
    # 按照自身某个维度进行concat,常用来合并前后两个feature map,也就是上面Yolo 5s结构图中的Concat。
    # Concatenate a list of tensors along dimension
    def __init__(self, dimension=1):
        """
            在yolo.py的parse_model模块调用
            :params dimension: 沿着哪个维度进行concat
        """
        super().__init__()
        self.d = dimension
    def forward(self, x):
        return torch.cat(x, self.d)
class DWConv(Conv):
    """
       Depthwise convolution 深度可分离卷积
       :params c1: 输入的channel值
       :params c2: 输出的channel值
       :params k: 卷积的kernel_size
       :params s: 卷积的stride
       :params act:
       g: 深度可分离的groups数
   """
    def __init__(self, c1, c2, k=1, s=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
        super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
# 改变feature map的维度  用的不多
class Contract(nn.Module):
    """
        用在yolo.py的parse_model模块
       改变输入特征的shape 将w和h维度(缩小)的数据收缩到channel维度上(放大)
       Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
   """
    # Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
    def __init__(self, gain=2):
        super().__init__()
        self.gain = gain
    def forward(self, x):
        b, c, h, w = x.size()  # assert (h / s == 0) and (W / s == 0), 'Indivisible gain'
        s = self.gain
        x = x.view(b, c, h // s, s, w // s, s)  # x(1,64,40,2,40,2)
        # permute: 改变tensor的维度顺序
        x = x.permute(0, 3, 5, 1, 2, 4).contiguous()  # x(1,2,2,64,40,40)
        # .view: 改变tensor的维度
        return x.view(b, c * s * s, h // s, w // s)  # x(1,256,40,40)
class Expand(nn.Module):
    """
        用在yolo.py的parse_model模块  用的不多
        Expand函数也是改变输入特征的shape,不过与Contract的相反, 是将channel维度(变小)的数据扩展到W和H维度(变大)。
        改变输入特征的shape 将channel维度(变小)的数据扩展到W和H维度(变大)
        Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
    """
    # Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
    def __init__(self, gain=2):
        super().__init__()
        self.gain = gain
    def forward(self, x):
        b, c, h, w = x.size()  # assert C / s ** 2 == 0, 'Indivisible gain'
        s = self.gain
        x = x.view(b, s, s, c // s ** 2, h, w)  # x(1,2,2,16,80,80)
        x = x.permute(0, 3, 4, 1, 5, 2).contiguous()  # x(1,16,80,2,80,2)
        return x.view(b, c // s ** 2, h * s, w * s)  # x(1,16,160,160)
# ============================================= 注意力机制 ======================================================
# transformer
class TransformerLayer(nn.Module):
    """
         Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)
         视频: https://www.bilibili.com/video/BV1Di4y1c7Zm?p=5&spm_id_from=pageDriver
              https://www.bilibili.com/video/BV1v3411r78R?from=search&seid=12070149695619006113
         这部分相当于原论文中的单个Encoder部分(只移除了两个Norm部分, 其他结构和原文中的Encoding一模一样)
    """
    # Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)
    def __init__(self, c, num_heads):
        super().__init__()
        self.q = nn.Linear(c, c, bias=False)
        self.k = nn.Linear(c, c, bias=False)
        self.v = nn.Linear(c, c, bias=False)
        # 输入: query、key、value
        # 输出: 0 attn_output 即通过self-attention之后,从每一个词语位置输出来的attention 和输入的query它们形状一样的
        #      1 attn_output_weights 即attention weights 每一个单词和任意另一个单词之间都会产生一个weight
        self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
        self.fc1 = nn.Linear(c, c, bias=False)
        self.fc2 = nn.Linear(c, c, bias=False)
    def forward(self, x):
        # 多头注意力机制 + 残差(这里移除了LayerNorm for better performance)
        x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x
        # feed forward 前馈神经网络 + 残差(这里移除了LayerNorm for better performance)
        x = self.fc2(self.fc1(x)) + x
        return x
class TransformerBlock(nn.Module):
    """
       Vision Transformer https://arxiv.org/abs/2010.11929
       视频: https://www.bilibili.com/video/BV1Di4y1c7Zm?p=5&spm_id_from=pageDriver
            https://www.bilibili.com/video/BV1v3411r78R?from=search&seid=12070149695619006113
       这部分相当于原论文中的Encoders部分 只替换了一些编码方式和最后Encoders出来数据处理方式
    """
    # Vision Transformer https://arxiv.org/abs/2010.11929
    def __init__(self, c1, c2, num_heads, num_layers):
        super().__init__()
        self.conv = None
        if c1 != c2:
            self.conv = Conv(c1, c2)
        self.linear = nn.Linear(c2, c2)  # learnable position embedding 位置编码
        self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers)))
        self.c2 = c2    # 输出channel
    def forward(self, x):
        if self.conv is not None:    # embedding
            x = self.conv(x)
        b, _, w, h = x.shape
        p = x.flatten(2).permute(2, 0, 1)
        return self.tr(p + self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h)
class C3TR(C3):
    """
        这部分是根据上面的C3结构改编而来的, 将原先的Bottleneck替换为调用TransformerBlock模块
    """
    # C3 module with TransformerBlock()
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
        super().__init__(c1, c2, n, shortcut, g, e)
        c_ = int(c2 * e)
        self.m = TransformerBlock(c_, c_, 4, n)
# ============================================= 模型扩展模块 ======================================================
class AutoShape(nn.Module):
    """在yolo.py中Model类的autoshape函数中使用
        将model封装成包含前处理、推理、后处理的模块(预处理 + 推理 + nms)  也是一个扩展模型功能的模块
        autoshape模块在train中不会被调用,当模型训练结束后,会通过这个模块对图片进行重塑,来方便模型的预测
        自动调整shape,我们输入的图像可能不一样,可能来自cv2/np/PIL/torch 对输入进行预处理 调整其shape,
        调整shape在datasets.py文件中,这个实在预测阶段使用的,model.eval(),模型就已经无法训练进入预测模式了
        input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
    """
    # YOLOv5 input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
    conf = 0.25  # 置信度阈值 NMS confidence threshold
    iou = 0.45  # NMS IoU threshold
    agnostic = False  # NMS class-agnostic
    multi_label = False  # NMS multiple labels per box
    classes = None  # 是否nms后只保留特定的类别 (optional list) filter by class
    max_det = 1000  # maximum number of detections per image
    amp = False  # Automatic Mixed Precision (AMP) inference
    def __init__(self, model):
        super().__init__()
        LOGGER.info('Adding AutoShape... ')
        copy_attr(self, model, include=('yaml', 'nc', 'hyp', 'names', 'stride', 'abc'), exclude=())  # copy attributes
        self.dmb = isinstance(model, DetectMultiBackend)  # DetectMultiBackend() instance
        self.pt = not self.dmb or model.pt  # PyTorch model
        # 开启验证模式
        self.model = model.eval()
    def _apply(self, fn):
        # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
        self = super()._apply(fn)
        if self.pt:
            m = self.model.model.model[-1] if self.dmb else self.model.model[-1]  # Detect()
            m.stride = fn(m.stride)
            m.grid = list(map(fn, m.grid))
            if isinstance(m.anchor_grid, list):
                m.anchor_grid = list(map(fn, m.anchor_grid))
        return self
    @torch.no_grad()
    def forward(self, imgs, size=640, augment=False, profile=False):
        # 这里的imgs针对不同的方法读入,官方也给了具体的方法,size是图片的尺寸,就比如最上面图片里面的输入608*608*3
        # Inference from various sources. For height=640, width=1280, RGB images example inputs are:
        #   file:       imgs = 'data/images/zidane.jpg'  # str or PosixPath
        #   URI:             = 'https://ultralytics.com/images/zidane.jpg'
        #   OpenCV:          = cv2.imread('image.jpg')[:,:,::-1]  # HWC BGR to RGB x(640,1280,3)
        #   PIL:             = Image.open('image.jpg') or ImageGrab.grab()  # HWC x(640,1280,3)
        #   numpy:           = np.zeros((640,1280,3))  # HWC
        #   torch:           = torch.zeros(16,3,320,640)  # BCHW (scaled to size=640, 0-1 values)
        #   multiple:        = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...]  # list of images
        t = [time_sync()]
        p = next(self.model.parameters()) if self.pt else torch.zeros(1)  # for device and type
        autocast = self.amp and (p.device.type != 'cpu')  # Automatic Mixed Precision (AMP) inference
        # 图片如果是tensor格式 说明是预处理过的, 直接正常进行前向推理即可 nms在推理结束进行(函数外写)
        if isinstance(imgs, torch.Tensor):  # torch
            with amp.autocast(enabled=autocast):
                return self.model(imgs.to(p.device).type_as(p), augment, profile)  # inference
        # Pre-process
        # 图片不是tensor格式 就先对图片进行预处理  Pre-process
        n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (1, [imgs])  # number of images, list of images
        shape0, shape1, files = [], [], []  # image and inference shapes, filenames
        for i, im in enumerate(imgs):
            f = f'image{i}'  # filename
            if isinstance(im, (str, Path)):  # filename or uri
                im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith('http') else im), im
                im = np.asarray(exif_transpose(im))
            elif isinstance(im, Image.Image):  # PIL Image
                im, f = np.asarray(exif_transpose(im)), getattr(im, 'filename', f) or f
            files.append(Path(f).with_suffix('.jpg').name)
            if im.shape[0] < 5:  # image in CHW
                im = im.transpose((1, 2, 0))  # reverse dataloader .transpose(2, 0, 1)
            im = im[..., :3] if im.ndim == 3 else np.tile(im[..., None], 3)  # enforce 3ch input
            s = im.shape[:2]  # HWC
            shape0.append(s)  # image shape
            g = (size / max(s))  # gain
            shape1.append([y * g for y in s])
            imgs[i] = im if im.data.contiguous else np.ascontiguousarray(im)  # update
        shape1 = [make_divisible(x, self.stride) for x in np.stack(shape1, 0).max(0)]  # inference shape
        x = [letterbox(im, new_shape=shape1 if self.pt else size, auto=False)[0] for im in imgs]  # pad
        x = np.stack(x, 0) if n > 1 else x[0][None]  # stack
        x = np.ascontiguousarray(x.transpose((0, 3, 1, 2)))  # BHWC to BCHW
        x = torch.from_numpy(x).to(p.device).type_as(p) / 255  # uint8 to fp16/32
        t.append(time_sync())
        with amp.autocast(enabled=autocast):
            # 预处理结束再进行前向推理  Inference
            y = self.model(x, augment, profile)  # forward  前向推理
            t.append(time_sync())
            # 前向推理结束后 进行后处理Post-process  nms
            y = non_max_suppression(y if self.dmb else y[0], self.conf, iou_thres=self.iou, classes=self.classes,
                                    agnostic=self.agnostic, multi_label=self.multi_label, max_det=self.max_det)  # NMS
            for i in range(n):
                scale_coords(shape1, y[i][:, :4], shape0[i])     # 将nms后的预测结果映射回原图尺寸
            t.append(time_sync())
            return Detections(imgs, y, files, t, self.names, x.shape)
class Detections:
    """
        用在AutoShape函数结尾
        对推理结果进行一些处理
       detections class for YOLOv5 inference results
   """
    # YOLOv5 detections class for inference results
    def __init__(self, imgs, pred, files, times=(0, 0, 0, 0), names=None, shape=None):
        super().__init__()
        d = pred[0].device  # device
        gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d) for im in imgs]  # normalizations
        self.imgs = imgs  # list of images as numpy arrays
        self.pred = pred  # list of tensors pred[0] = (xyxy, conf, cls)
        self.names = names  # class names
        self.files = files  # image filenames
        self.times = times  # profiling times
        self.xyxy = pred  # xyxy pixels
        self.xywh = [xyxy2xywh(x) for x in pred]  # xywh pixels
        self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)]  # xyxy normalized
        self.xywhn = [x / g for x, g in zip(self.xywh, gn)]  # xywh normalized
        self.n = len(self.pred)  # number of images (batch size)
        self.t = tuple((times[i + 1] - times[i]) * 1000 / self.n for i in range(3))  # timestamps (ms)
        self.s = shape  # inference BCHW shape
    def display(self, pprint=False, show=False, save=False, crop=False, render=False, save_dir=Path('')):
        crops = []
        for i, (im, pred) in enumerate(zip(self.imgs, self.pred)):
            s = f'image {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} '  # string
            if pred.shape[0]:
                for c in pred[:, -1].unique():
                    n = (pred[:, -1] == c).sum()  # detections per class
                    s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, "  # add to string
                if show or save or render or crop:
                    annotator = Annotator(im, example=str(self.names))
                    for *box, conf, cls in reversed(pred):  # xyxy, confidence, class
                        label = f'{self.names[int(cls)]} {conf:.2f}'
                        if crop:
                            file = save_dir / 'crops' / self.names[int(cls)] / self.files[i] if save else None
                            crops.append({'box': box, 'conf': conf, 'cls': cls, 'label': label,
                                          'im': save_one_box(box, im, file=file, save=save)})
                        else:  # all others
                            annotator.box_label(box, label, color=colors(cls))
                    im = annotator.im
            else:
                s += '(no detections)'
            im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im  # from np
            if pprint:
                LOGGER.info(s.rstrip(', '))
            if show:
                im.show(self.files[i])  # show
            if save:
                f = self.files[i]
                im.save(save_dir / f)  # save
                if i == self.n - 1:
                    LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}")
            if render:
                self.imgs[i] = np.asarray(im)
        if crop:
            if save:
                LOGGER.info(f'Saved results to {save_dir}\n')
            return crops
    def print(self):
        self.display(pprint=True)  # print results
        LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {tuple(self.s)}' %
                    self.t)
    def show(self):
        self.display(show=True)  # show results
    def save(self, save_dir='runs/detect/exp'):
        save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True)  # increment save_dir
        self.display(save=True, save_dir=save_dir)  # save results
    def crop(self, save=True, save_dir='runs/detect/exp'):
        save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) if save else None
        return self.display(crop=True, save=save, save_dir=save_dir)  # crop results
    def render(self):
        self.display(render=True)  # render results
        return self.imgs
    def pandas(self):
        # return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0])
        new = copy(self)  # return copy
        ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name'  # xyxy columns
        cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name'  # xywh columns
        for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]):
            a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)]  # update
            setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
        return new
    def tolist(self):
        # return a list of Detections objects, i.e. 'for result in results.tolist():'
        r = range(self.n)  # iterable
        x = [Detections([self.imgs[i]], [self.pred[i]], [self.files[i]], self.times, self.names, self.s) for i in r]
        # for d in x:
        #    for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
        #        setattr(d, k, getattr(d, k)[0])  # pop out of list
        return x
    def __len__(self):
        return self.n
class Classify(nn.Module):
    # Classification head, i.e. x(b,c1,20,20) to x(b,c2)
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1):  # ch_in, ch_out, kernel, stride, padding, groups
        """
               这是一个二级分类模块, 什么是二级分类模块? 比如做车牌的识别, 先识别出车牌, 如果想对车牌上的字进行识别, 就需要二级分类进一步检测.
               如果对模型输出的分类再进行分类, 就可以用这个模块. 不过这里这个类写的比较简单, 若进行复杂的二级分类, 可以根据自己的实际任务可以改写, 这里代码不唯一.
               Classification head, i.e. x(b,c1,20,20) to x(b,c2)
               用于第二级分类   可以根据自己的任务自己改写,比较简单
               比如车牌识别 检测到车牌之后还需要检测车牌在哪里,如果检测到侧拍后还想对车牌上的字再做识别的话就要进行二级分类
       """
        super().__init__()
        self.aap = nn.AdaptiveAvgPool2d(1)  # to x(b,c1,1,1)    自适应平均池化操作
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g)  # to x(b,c2,1,1)
        self.flat = nn.Flatten()    # 展平
    def forward(self, x):
        # 先自适应平均池化操作, 然后拼接
        z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1)  # cat if list
        # 对z进行展平操作
        return self.flat(self.conv(z))  # flatten to x(b,c2)
# ============================================= V6新增模块 ======================================================
class C3SPP(C3):
    """
        这部分是根据上面的C3结构改编而来的, 将原先的Bottleneck替换为调用TransformerBlock模块
        """
    # C3 module with TransformerBlock()
    # C3 module with SPP()
    def __init__(self, c1, c2, k=(5, 9, 13), n=1, shortcut=True, g=1, e=0.5):
        super().__init__(c1, c2, n, shortcut, g, e)
        c_ = int(c2 * e)
        self.m = SPP(c_, c_, k)
class C3Ghost(C3):
    # C3 module with GhostBottleneck()
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
        super().__init__(c1, c2, n, shortcut, g, e)
        c_ = int(c2 * e)  # hidden channels
        self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))
class SPPF(nn.Module):
    # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
    def __init__(self, c1, c2, k=5):  # equivalent to SPP(k=(5, 9, 13))
        super().__init__()
        c_ = c1 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_ * 4, c2, 1, 1)
        self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
    def forward(self, x):
        x = self.cv1(x)
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')  # suppress torch 1.9.0 max_pool2d() warning
            y1 = self.m(x)
            y2 = self.m(y1)
            return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))
class GhostConv(nn.Module):
    # Ghost Convolution https://github.com/huawei-noah/ghostnet
    def __init__(self, c1, c2, k=1, s=1, g=1, act=True):  # ch_in, ch_out, kernel, stride, groups
        """
                Standard bottleneck  Conv+Conv+shortcut
                :params c1: 第一个卷积的输入channel
                :params c2: 第二个卷积的输出channel
                :params shortcut: bool 是否有shortcut连接 默认是True
                :params g: 卷积分组的个数  =1就是普通卷积  >1就是深度可分离卷积
                :params e: expansion ratio  e*c2就是第一个卷积的输出channel=第二个卷积的输入channel
        """
        super().__init__()
        c_ = c2 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, k, s, None, g, act)
        self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)
    def forward(self, x):
        y = self.cv1(x)
        return torch.cat([y, self.cv2(y)], 1)
class GhostBottleneck(nn.Module):
    # Ghost Bottleneck https://github.com/huawei-noah/ghostnet
    def __init__(self, c1, c2, k=3, s=1):  # ch_in, ch_out, kernel, stride
        super().__init__()
        c_ = c2 // 2
        self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1),  # pw
                                  DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(),  # dw
                                  GhostConv(c_, c2, 1, 1, act=False))  # pw-linear
        self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False),
                                      Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
    def forward(self, x):
        return self.conv(x) + self.shortcut(x)
class DetectMultiBackend(nn.Module):
    # YOLOv5 MultiBackend class for python inference on various backends
    def __init__(self, weights='yolov5s.pt', device=None, dnn=False, data=None):
        # Usage:
        #   PyTorch:              weights = *.pt
        #   TorchScript:                    *.torchscript
        #   ONNX Runtime:                   *.onnx
        #   ONNX OpenCV DNN:                *.onnx with --dnn
        #   OpenVINO:                       *.xml
        #   CoreML:                         *.mlmodel
        #   TensorRT:                       *.engine
        #   TensorFlow SavedModel:          *_saved_model
        #   TensorFlow GraphDef:            *.pb
        #   TensorFlow Lite:                *.tflite
        #   TensorFlow Edge TPU:            *_edgetpu.tflite
        from models.experimental import attempt_download, attempt_load  # scoped to avoid circular import
        super().__init__()
        w = str(weights[0] if isinstance(weights, list) else weights)
        pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs = self.model_type(w)  # get backend
        stride, names = 64, [f'class{i}' for i in range(1000)]  # assign defaults
        w = attempt_download(w)  # download if not local
        if data:  # data.yaml path (optional)
            with open(data, errors='ignore') as f:
                names = yaml.safe_load(f)['names']  # class names
        if pt:  # PyTorch
            model = attempt_load(weights if isinstance(weights, list) else w, map_location=device)
            stride = max(int(model.stride.max()), 32)  # model stride
            names = model.module.names if hasattr(model, 'module') else model.names  # get class names
            self.model = model  # explicitly assign for to(), cpu(), cuda(), half()
        elif jit:  # TorchScript
            LOGGER.info(f'Loading {w} for TorchScript inference...')
            extra_files = {'config.txt': ''}  # model metadata
            model = torch.jit.load(w, _extra_files=extra_files)
            if extra_files['config.txt']:
                d = json.loads(extra_files['config.txt'])  # extra_files dict
                stride, names = int(d['stride']), d['names']
        elif dnn:  # ONNX OpenCV DNN
            LOGGER.info(f'Loading {w} for ONNX OpenCV DNN inference...')
            check_requirements(('opencv-python>=4.5.4',))
            net = cv2.dnn.readNetFromONNX(w)
        elif onnx:  # ONNX Runtime
            LOGGER.info(f'Loading {w} for ONNX Runtime inference...')
            cuda = torch.cuda.is_available()
            check_requirements(('onnx', 'onnxruntime-gpu' if cuda else 'onnxruntime'))
            import onnxruntime
            providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if cuda else ['CPUExecutionProvider']
            session = onnxruntime.InferenceSession(w, providers=providers)
        elif xml:  # OpenVINO
            LOGGER.info(f'Loading {w} for OpenVINO inference...')
            check_requirements(('openvino-dev',))  # requires openvino-dev: https://pypi.org/project/openvino-dev/
            import openvino.inference_engine as ie
            core = ie.IECore()
            if not Path(w).is_file():  # if not *.xml
                w = next(Path(w).glob('*.xml'))  # get *.xml file from *_openvino_model dir
            network = core.read_network(model=w, weights=Path(w).with_suffix('.bin'))  # *.xml, *.bin paths
            executable_network = core.load_network(network, device_name='CPU', num_requests=1)
        elif engine:  # TensorRT
            LOGGER.info(f'Loading {w} for TensorRT inference...')
            import tensorrt as trt  # https://developer.nvidia.com/nvidia-tensorrt-download
            check_version(trt.__version__, '7.0.0', hard=True)  # require tensorrt>=7.0.0
            Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr'))
            logger = trt.Logger(trt.Logger.INFO)
            with open(w, 'rb') as f, trt.Runtime(logger) as runtime:
                model = runtime.deserialize_cuda_engine(f.read())
            bindings = OrderedDict()
            for index in range(model.num_bindings):
                name = model.get_binding_name(index)
                dtype = trt.nptype(model.get_binding_dtype(index))
                shape = tuple(model.get_binding_shape(index))
                data = torch.from_numpy(np.empty(shape, dtype=np.dtype(dtype))).to(device)
                bindings[name] = Binding(name, dtype, shape, data, int(data.data_ptr()))
            binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())
            context = model.create_execution_context()
            batch_size = bindings['images'].shape[0]
        elif coreml:  # CoreML
            LOGGER.info(f'Loading {w} for CoreML inference...')
            import coremltools as ct
            model = ct.models.MLModel(w)
        else:  # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
            if saved_model:  # SavedModel
                LOGGER.info(f'Loading {w} for TensorFlow SavedModel inference...')
                import tensorflow as tf
                keras = False  # assume TF1 saved_model
                model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w)
            elif pb:  # GraphDef https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
                LOGGER.info(f'Loading {w} for TensorFlow GraphDef inference...')
                import tensorflow as tf
                def wrap_frozen_graph(gd, inputs, outputs):
                    x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), [])  # wrapped
                    ge = x.graph.as_graph_element
                    return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs))
                gd = tf.Graph().as_graph_def()  # graph_def
                gd.ParseFromString(open(w, 'rb').read())
                frozen_func = wrap_frozen_graph(gd, inputs="x:0", outputs="Identity:0")
            elif tflite or edgetpu:  # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python
                try:  # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu
                    from tflite_runtime.interpreter import Interpreter, load_delegate
                except ImportError:
                    import tensorflow as tf
                    Interpreter, load_delegate = tf.lite.Interpreter, tf.lite.experimental.load_delegate,
                if edgetpu:  # Edge TPU https://coral.ai/software/#edgetpu-runtime
                    LOGGER.info(f'Loading {w} for TensorFlow Lite Edge TPU inference...')
                    delegate = {'Linux': 'libedgetpu.so.1',
                                'Darwin': 'libedgetpu.1.dylib',
                                'Windows': 'edgetpu.dll'}[platform.system()]
                    interpreter = Interpreter(model_path=w, experimental_delegates=[load_delegate(delegate)])
                else:  # Lite
                    LOGGER.info(f'Loading {w} for TensorFlow Lite inference...')
                    interpreter = Interpreter(model_path=w)  # load TFLite model
                interpreter.allocate_tensors()  # allocate
                input_details = interpreter.get_input_details()  # inputs
                output_details = interpreter.get_output_details()  # outputs
            elif tfjs:
                raise Exception('ERROR: YOLOv5 TF.js inference is not supported')
        self.__dict__.update(locals())  # assign all variables to self
    def forward(self, im, augment=False, visualize=False, val=False):
        # YOLOv5 MultiBackend inference
        b, ch, h, w = im.shape  # batch, channel, height, width
        if self.pt or self.jit:  # PyTorch
            y = self.model(im) if self.jit else self.model(im, augment=augment, visualize=visualize)
            return y if val else y[0]
        elif self.dnn:  # ONNX OpenCV DNN
            im = im.cpu().numpy()  # torch to numpy
            self.net.setInput(im)
            y = self.net.forward()
        elif self.onnx:  # ONNX Runtime
            im = im.cpu().numpy()  # torch to numpy
            y = self.session.run([self.session.get_outputs()[0].name], {self.session.get_inputs()[0].name: im})[0]
        elif self.xml:  # OpenVINO
            im = im.cpu().numpy()  # FP32
            desc = self.ie.TensorDesc(precision='FP32', dims=im.shape, layout='NCHW')  # Tensor Description
            request = self.executable_network.requests[0]  # inference request
            request.set_blob(blob_name='images', blob=self.ie.Blob(desc, im))  # name=next(iter(request.input_blobs))
            request.infer()
            y = request.output_blobs['output'].buffer  # name=next(iter(request.output_blobs))
        elif self.engine:  # TensorRT
            assert im.shape == self.bindings['images'].shape, (im.shape, self.bindings['images'].shape)
            self.binding_addrs['images'] = int(im.data_ptr())
            self.context.execute_v2(list(self.binding_addrs.values()))
            y = self.bindings['output'].data
        elif self.coreml:  # CoreML
            im = im.permute(0, 2, 3, 1).cpu().numpy()  # torch BCHW to numpy BHWC shape(1,320,192,3)
            im = Image.fromarray((im[0] * 255).astype('uint8'))
            # im = im.resize((192, 320), Image.ANTIALIAS)
            y = self.model.predict({'image': im})  # coordinates are xywh normalized
            if 'confidence' in y:
                box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]])  # xyxy pixels
                conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float)
                y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)
            else:
                k = 'var_' + str(sorted(int(k.replace('var_', '')) for k in y)[-1])  # output key
                y = y[k]  # output
        else:  # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
            im = im.permute(0, 2, 3, 1).cpu().numpy()  # torch BCHW to numpy BHWC shape(1,320,192,3)
            if self.saved_model:  # SavedModel
                y = (self.model(im, training=False) if self.keras else self.model(im)[0]).numpy()
            elif self.pb:  # GraphDef
                y = self.frozen_func(x=self.tf.constant(im)).numpy()
            else:  # Lite or Edge TPU
                input, output = self.input_details[0], self.output_details[0]
                int8 = input['dtype'] == np.uint8  # is TFLite quantized uint8 model
                if int8:
                    scale, zero_point = input['quantization']
                    im = (im / scale + zero_point).astype(np.uint8)  # de-scale
                self.interpreter.set_tensor(input['index'], im)
                self.interpreter.invoke()
                y = self.interpreter.get_tensor(output['index'])
                if int8:
                    scale, zero_point = output['quantization']
                    y = (y.astype(np.float32) - zero_point) * scale  # re-scale
            y[..., :4] *= [w, h, w, h]  # xywh normalized to pixels
        y = torch.tensor(y) if isinstance(y, np.ndarray) else y
        return (y, []) if val else y
    def warmup(self, imgsz=(1, 3, 640, 640), half=False):
        # Warmup model by running inference once
        if self.pt or self.jit or self.onnx or self.engine:  # warmup types
            if isinstance(self.device, torch.device) and self.device.type != 'cpu':  # only warmup GPU models
                im = torch.zeros(*imgsz).to(self.device).type(torch.half if half else torch.float)  # input image
                self.forward(im)  # warmup
    @staticmethod
    def model_type(p='path/to/model.pt'):
        # Return model type from model path, i.e. path='path/to/model.onnx' -> type=onnx
        from export import export_formats
        suffixes = list(export_formats().Suffix) + ['.xml']  # export suffixes
        check_suffix(p, suffixes)  # checks
        p = Path(p).name  # eliminate trailing separators
        pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, xml2 = (s in p for s in suffixes)
        xml |= xml2  # *_openvino_model or *.xml
        tflite &= not edgetpu  # *.tflite
        return pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs


目录
相关文章
|
5月前
|
安全 开发者 C++
Windows10安装modelscope后import这个模块报错:OSError: [WinError 1] 函数不正确。: 'D:\Anaconda\envs\MDS\lib\site-packages\modelscope\utils\ast_utils.py'
Windows10安装modelscope后import这个模块报错:OSError: [WinError 1] 函数不正确。: 'D:\Anaconda\envs\MDS\lib\site-packages\modelscope\utils\ast_utils.py'
99 1
|
7月前
tensorflow.python.framework.errors_impl.InvalidArgumentError
tensorflow.python.framework.errors_impl.InvalidArgumentError:logits and labels must be broadcastable: logits_size=[8,4] labels_size=[8,2]训练模型时报错,tensorflow.python.framework.errors_impl.InvalidArgu...
64 1
|
7月前
|
TensorFlow 算法框架/工具 Python
python报错:ImportError: cannot import name ‘_tf_stack‘ from ‘tenso
ImportError: cannot import name ‘_tf_stack’ from ‘tensorflow.python’本来keras和tensorflow用得好好的,忽然今天报错导入包得时候直接报错。在网上找了很多方法,但是用处都不大,尝试了很多遍都不行。于是尝试将tensorflow和keras卸载重装。(需要彻底卸载,pip命令后还需要删除文件夹中得几个文件夹,也就是...
69 1
|
5月前
|
PyTorch 算法框架/工具
实战pytorch中utils.data.TensorDataset和utils.data.DataLoader工具
本文主要说明pytorch框架中utils.data.TensorDataset和utils.data.DataLoader两个工具类。
94 0
|
12月前
|
机器学习/深度学习 人工智能 数据挖掘
|
12月前
【YOLOV5-6.x讲解】DIY实验文件 models/experimental.py
【YOLOV5-6.x讲解】DIY实验文件 models/experimental.py
157 0
|
12月前
【YOLOV5-6.x讲解】模型搭建模块 models/yolo.py
【YOLOV5-6.x讲解】模型搭建模块 models/yolo.py
231 0
|
TensorFlow 算法框架/工具
成功解决AttributeError: module 'tensorflow.python.keras' has no attribute 'Model'
成功解决AttributeError: module 'tensorflow.python.keras' has no attribute 'Model'
|
JSON 前端开发 数据格式
Three.js 之 Import Model 导入模型
Three.js 提供了很多原始模型,但如果我们需要更复杂的模型,最好使用 3D 软件建模,然后导入到场景中。本节我们就来学学如何导入一个做好的 3D 模型。 3D 模型的各种格式 3D 模型有各种各样的格式,详情可参考维基百科List_of_file_formats#3D_graphics。这些格式各有特点。接下来我们列举一些比较常见和流行的。 OBJ FBX STL PLY COLLADA 3DS GLTF
282 0
【yolov5报错】Can‘t get attribute ‘SPPF‘ on <module ‘models.common‘ from ‘--yolov5-5.0\models\common.py
【yolov5报错】Can‘t get attribute ‘SPPF‘ on <module ‘models.common‘ from ‘--yolov5-5.0\models\common.py
996 0