Linux内核32-读-拷贝-更新(RCU)

简介: Linux内核32-读-拷贝-更新(RCU)

每一种技术的出现必然是因为某种需求。正因为人的本性是贪婪的,所以科技的创新才能日新月异。


1 引言


seqlock锁只能允许一个写操作,但是有些时候我们可能需要多个写操作可以并发执行。所以,Linux内核引入了读-拷贝-更新技术(英文是Read-copy update,简称RCU),它是另外一种同步技术,主要用来保护被多个CPU读取的数据结构。RCU允许多个读操作和多个写操作并发执行。更重要的是,RCU是一种免锁算法,也就是说,它没有使用共享的锁或计数器保护数据结构(但是,这儿还是主要指的读操作是无锁算法。而对于多个写操作来说,需要使用lock保护避免多个CPU的并发访问。所以,其使用场合也是比较严格的,多个写操作中的锁开销不能大于读操作采用无锁算法省下的开销)。这相对于读写自旋锁和seqlock来说,具有很大的优势,毕竟锁的申请和释放对Cache行的”窥视”和失效也是一个很大的负担。

  1. Cache行的”窥视”,指的是因为每个CPU具有局部Cache,所以硬件snoop单元必须时时刻刻在”窥视”所有的Cache行,并对其不合法的数据进行失效处理,重新从内存获取数据替换到相应的Cache行中。而在这里,如果使用了共享的lock或者计数器,那么每次对其进行写操作,必然导致相应Cache行的失效。然后重新把使用这个lock的CPU的局部Cache进行更新。


2 RCU实现


既然RCU没有使用共享数据结构,那么它是如何神奇地实现同步技术的呢?其核心思想就是限制RCU的使用范围:


  1. 只有动态分配的、通过指针进行访问的数据结构。

  1. 进入RCU保护的临界代码段的内核控制路径不能休眠。


3 基本操作


  • 对于reader,RCU的基本操作为:
  • (1)调用rcu_read_lock(),进入RCU保护的临界代码段。等价于调用preempt_disable()
  • (2)调用rcu_dereference,获取RCU保护的数据指针。然后通过该指针读取数据。当然了,在此期间读操作不能发生休眠。
  • (3)调用rcu_read_unlock(),离开RCU保护的临界代码段。等价于调用preempt_enable()
  • 对于writer,RCU的基本操作为:
  • (1)拷贝一份旧数据到新数据,修改新数据。
  • (2)调用rcu_assign_pointer(),将RCU保护的指针修改为新数据的指针。
    因为指针的修改是一个原子操作,所以不会发生读写不一致的问题。但是,需要插入一个内存屏障保证只有在数据被修改完成后,其它CPU才能看见更新的指针。尤其是当使用了自旋锁保护RCU禁止多个写操作的并发访问的时候。
  • (3)调用synchronize_rcu,等待所有的读操作都离开临界代码段,完成同步。
    RCU技术的真正问题是当写操作更新了指针后,旧数据的存储空间不能立马释放。因为,这时候读操作可能还在读取旧数据,所以,必须等到所有的可能的读操作执行rcu_read_unlock()离开临界代码段后,旧数据的存储空间才能被释放。
  • (4)调用call_rcu(),完成旧数据存储空间的回收工作。
    该函数的参数是类型为rcu_head的描述符的地址。该描述符嵌入在要回收的数据结构的内部。该函数还有一个参数就是一个回调函数,当所有的CPU处于空闲状态的时候执行这个回调函数。这个函数通常是负责旧数据存储空间的释放工作。
    有一个问题需要注意的是,这个回调函数的执行是在另一个内核线程中执行。call_rcu()函数把回调函数的地址和其参数存储在rcu_head描述符中,然后将这个描述符插入到每个CPU的回调函数列表中(这儿又体现了per-CPU变量的重要性)。每个系统时间Tick,内核都会检查局部CPU是否处于空闲状态。当所有的CPU处于空闲状态的时候,一个特殊的tasklet就会执行所有的回调函数,这个tasklet描述符存储在每个CPU的rcu_tasklet变量中。


4 使用场合


RCU是从Linux2.6版本引入的,主要使用在网络层和虚拟文件系统层。

相关文章
|
6天前
|
算法 Linux 调度
深入理解Linux内核调度器:从基础到优化####
本文旨在通过剖析Linux操作系统的心脏——内核调度器,为读者揭开其高效管理CPU资源的神秘面纱。不同于传统的摘要概述,本文将直接以一段精简代码片段作为引子,展示一个简化版的任务调度逻辑,随后逐步深入,详细探讨Linux内核调度器的工作原理、关键数据结构、调度算法演变以及性能调优策略,旨在为开发者与系统管理员提供一份实用的技术指南。 ####
30 4
|
10天前
|
缓存 算法 Linux
深入理解Linux内核调度器:公平性与性能的平衡####
真知灼见 本文将带你深入了解Linux操作系统的核心组件之一——完全公平调度器(CFS),通过剖析其设计原理、工作机制以及在实际系统中的应用效果,揭示它是如何在众多进程间实现资源分配的公平性与高效性的。不同于传统的摘要概述,本文旨在通过直观且富有洞察力的视角,让读者仿佛亲身体验到CFS在复杂系统环境中游刃有余地进行任务调度的过程。 ####
31 6
|
9天前
|
缓存 资源调度 安全
深入探索Linux操作系统的心脏——内核配置与优化####
本文作为一篇技术性深度解析文章,旨在引领读者踏上一场揭秘Linux内核配置与优化的奇妙之旅。不同于传统的摘要概述,本文将以实战为导向,直接跳入核心内容,探讨如何通过精细调整内核参数来提升系统性能、增强安全性及实现资源高效利用。从基础概念到高级技巧,逐步揭示那些隐藏在命令行背后的强大功能,为系统管理员和高级用户打开一扇通往极致性能与定制化体验的大门。 --- ###
31 9
|
8天前
|
缓存 负载均衡 Linux
深入理解Linux内核调度器
本文探讨了Linux操作系统核心组件之一——内核调度器的工作原理和设计哲学。不同于常规的技术文章,本摘要旨在提供一种全新的视角来审视Linux内核的调度机制,通过分析其对系统性能的影响以及在多核处理器环境下的表现,揭示调度器如何平衡公平性和效率。文章进一步讨论了完全公平调度器(CFS)的设计细节,包括它如何处理不同优先级的任务、如何进行负载均衡以及它是如何适应现代多核架构的挑战。此外,本文还简要概述了Linux调度器的未来发展方向,包括对实时任务支持的改进和对异构计算环境的适应性。
26 6
|
9天前
|
缓存 Linux 开发者
Linux内核中的并发控制机制:深入理解与应用####
【10月更文挑战第21天】 本文旨在为读者提供一个全面的指南,探讨Linux操作系统中用于实现多线程和进程间同步的关键技术——并发控制机制。通过剖析互斥锁、自旋锁、读写锁等核心概念及其在实际场景中的应用,本文将帮助开发者更好地理解和运用这些工具来构建高效且稳定的应用程序。 ####
28 5
|
9天前
|
算法 Unix Linux
深入理解Linux内核调度器:原理与优化
本文探讨了Linux操作系统的心脏——内核调度器(Scheduler)的工作原理,以及如何通过参数调整和代码优化来提高系统性能。不同于常规摘要仅概述内容,本摘要旨在激发读者对Linux内核调度机制深层次运作的兴趣,并简要介绍文章将覆盖的关键话题,如调度算法、实时性增强及节能策略等。
|
10天前
|
存储 监控 安全
Linux内核调优的艺术:从基础到高级###
本文深入探讨了Linux操作系统的心脏——内核的调优方法。文章首先概述了Linux内核的基本结构与工作原理,随后详细阐述了内核调优的重要性及基本原则。通过具体的参数调整示例(如sysctl、/proc/sys目录中的设置),文章展示了如何根据实际应用场景优化系统性能,包括提升CPU利用率、内存管理效率以及I/O性能等关键方面。最后,介绍了一些高级工具和技术,如perf、eBPF和SystemTap,用于更深层次的性能分析和问题定位。本文旨在为系统管理员和高级用户提供实用的内核调优策略,以最大化Linux系统的效率和稳定性。 ###
|
9天前
|
Java Linux Android开发
深入探索Android系统架构:从Linux内核到应用层
本文将带领读者深入了解Android操作系统的复杂架构,从其基于Linux的内核到丰富多彩的应用层。我们将探讨Android的各个关键组件,包括硬件抽象层(HAL)、运行时环境、以及核心库等,揭示它们如何协同工作以支持广泛的设备和应用。通过本文,您将对Android系统的工作原理有一个全面的认识,理解其如何平衡开放性与安全性,以及如何在多样化的设备上提供一致的用户体验。
|
8天前
|
缓存 运维 网络协议
深入Linux内核架构:操作系统的核心奥秘
深入Linux内核架构:操作系统的核心奥秘
25 2
|
11天前
|
监控 网络协议 算法
Linux内核优化:提升系统性能与稳定性的策略####
本文深入探讨了Linux操作系统内核的优化策略,旨在通过一系列技术手段和最佳实践,显著提升系统的性能、响应速度及稳定性。文章首先概述了Linux内核的核心组件及其在系统中的作用,随后详细阐述了内存管理、进程调度、文件系统优化、网络栈调整及并发控制等关键领域的优化方法。通过实际案例分析,展示了这些优化措施如何有效减少延迟、提高吞吐量,并增强系统的整体健壮性。最终,文章强调了持续监控、定期更新及合理配置对于维持Linux系统长期高效运行的重要性。 ####