Linux内核28-自旋锁

简介: Linux内核28-自旋锁

1 引言


使用最广泛的同步技术就是加锁。对于锁概念,我相信大家已经不陌生了,不论是实时嵌入式系统还是服务器上的操作系统,都使用了这个概念。所以对于锁的理解就不再赘述了。

自旋锁是设计用来在多核系统中工作的一种特殊锁。如果内核控制路径发现自旋锁空闲,则申请加锁然后执行。相反,如果发现锁已经被其它CPU上的内核控制路径占用,它就会一直自旋,就是在循环查看锁是否已经释放,直到该锁被释放。

自旋锁的自旋过程就是一个忙等待的过程。也就是说,正在等待的内核控制路径正在浪费时间,因为什么也不干。但是,大部分的内核资源加锁的时间可能仅为毫秒的几分之一,因此,释放CPU使用权再获取可能比一直等待更消耗时间。所以,自旋锁使用的场合就是,内核资源的占用时间一般比较短,且是多核系统的时候


2 自旋锁结构实现


Linux内核系统中,自旋锁spinlock_t的实现主要使用了raw_spinlock_t结构,这个结构的实现,参考下面的代码:

typedef struct raw_spinlock {
    arch_spinlock_t raw_lock;
#ifdef CONFIG_GENERIC_LOCKBREAK
    unsigned int break_lock;
#endif
    ...
} raw_spinlock_t;
typedef struct spinlock {
    union {
        struct raw_spinlock rlock;
        ...
    };
} spinlock_t;

上面的代码中,核心的数据成员是raw_lockbreak_lock。对于raw_lock来说,其类型为arch_spinlock_t,从名称上也能看出,这个结构是跟体系结构相关的。

  • raw_lock
    表示自旋锁的状态,依赖于具体的架构实现。
  • break_lock
    标志着进程正在忙等待锁(仅当内核同时支持SMP和内核抢占时才会出现)。

接下来,我们分析加锁的流程。

3 spin_lock()函数

本章我们直接看源代码,用函数出现的顺序表示函数调用的顺序。首先,看加锁的函数为:

static __always_inline void spin_lock(spinlock_t *lock)
{
    raw_spin_lock(&lock->rlock);
}

raw_spin_lock函数的代码如下:

#define raw_spin_lock(lock) _raw_spin_lock(lock)

_raw_spin_lock函数分为2个版本:SMP版本和UP版本。


3.1 UP版本实现


_raw_spin_lock函数:

#define _raw_spin_lock(lock)            __LOCK(lock)

__LOCK函数代码如下:

#define __LOCK(lock) \
        do { preempt_disable(); ___LOCK(lock); } while (0)

可以看出,首先禁止内核抢占。然后调用

#define ___LOCK(lock) \
        do { __acquire(lock); (void)(lock); } while (0)

从上面的代码可以看出,单核系统没有处于debug状态时,没有真正的锁在运行。因此,就是禁止了内核抢占。至于void是避免编译器对未使用的锁变量发出警告。__acquire(lock)就是给检查器(CHECKER)添加适当的注释。真正的定义就是# define __acquire(x) (void)0


3.2 SMP版本实现


_raw_spin_lock函数:

static inline void __raw_spin_lock(raw_spinlock_t *lock)
{
    // 禁止内核抢占
    preempt_disable();
    // debug用
    spin_acquire(&lock->dep_map, 0, 0, _RET_IP_);
    // 真正申请锁的地方
    LOCK_CONTENDED(lock, do_raw_spin_trylock, do_raw_spin_lock);
}

LOCK_CONTENDED是一个通用的加锁流程。do_raw_spin_trylockdo_raw_spin_lock的实现依赖于具体的体系结构,以x86为例,do_raw_spin_trylock最终调用的是:

static inline int do_raw_spin_trylock(raw_spinlock_t *lock)
{
    return arch_spin_trylock(&(lock)->raw_lock);
}

arch_spin_trylock函数的实现依赖于具体的体系架构,以X86为例,代码如下:

typedef struct arch_spinlock {
    union {
        __ticketpair_t head_tail;
        struct __raw_tickets {
            __ticket_t head, tail; // 注意,x86使用的是小端模式,存在高地址空间的是tail
        } tickets;
    };
} arch_spinlock_t;
static __always_inline int arch_spin_trylock(arch_spinlock_t *lock)
{
    arch_spinlock_t old, new;
    // 获取旧的ticket信息
    old.tickets = READ_ONCE(lock->tickets);
    // head和tail不一致,说明锁正在被占用,加锁不成功
    if (!__tickets_equal(old.tickets.head, old.tickets.tail))
        return 0;
    // 将tail + 1
    new.head_tail = old.head_tail + (TICKET_LOCK_INC << TICKET_SHIFT);
    new.head_tail &= ~TICKET_SLOWPATH_FLAG;
    /* cmpxchg是一个完整的内存屏障 */
    return cmpxchg(&lock->head_tail, old.head_tail, new.head_tail) == old.head_tail;
}

从上述代码中可知,arch_spin_trylock的核心功能,就是判断自旋锁是否被占用,如果没被占用,尝试原子性地更新lock中的head_tail的值,将tail+1,返回是否加锁成功。

不考虑CONFIG_DEBUG_SPINLOCK宏的话,do_raw_spin_lock的源代码如下:

static inline void do_raw_spin_lock(raw_spinlock_t *lock) __acquires(lock)
{
    __acquire(lock);
    arch_spin_lock(&lock->raw_lock);
}

arch_spin_lock函数的源代码:

static __always_inline void arch_spin_lock(arch_spinlock_t *lock)
{
    register struct __raw_tickets inc = { .tail = TICKET_LOCK_INC };
    // 原子性地把ticket中的tail+1,返回的inc是+1之前的原始值
    inc = xadd(&lock->tickets, inc);
    if (likely(inc.head == inc.tail))
        goto out;
    for (;;) {
        unsigned count = SPIN_THRESHOLD;
        do {
            // 读取新的head值
            inc.head = READ_ONCE(lock->tickets.head);
            if (__tickets_equal(inc.head, inc.tail))
                goto clear_slowpath;
            cpu_relax();
        } while (--count);
        __ticket_lock_spinning(lock, inc.tail);
    }

// 循环直到head和tail相等

clear_slowpath:
    __ticket_check_and_clear_slowpath(lock, inc.head);
out:
    barrier();  /* make sure nothing creeps before the lock is taken */
}

__ticket_check_and_clear_slowpath函数执行的操作是把tail加1,并把之前的值记录下来,完成加锁操作。

static inline void __ticket_check_and_clear_slowpath(arch_spinlock_t *lock,
                            __ticket_t head)
{
    if (head & TICKET_SLOWPATH_FLAG) {
        arch_spinlock_t old, new;
        old.tickets.head = head;
        new.tickets.head = head & ~TICKET_SLOWPATH_FLAG;
        old.tickets.tail = new.tickets.head + TICKET_LOCK_INC;
        new.tickets.tail = old.tickets.tail;
        /* try to clear slowpath flag when there are no contenders */
        cmpxchg(&lock->head_tail, old.head_tail, new.head_tail);
    }
}

至此,就完成了申请锁的操作。接下来我们再来研究一下,解锁流程。


4. spin_unlock函数


对于SMP架构来说,spin_unlock最终调用的是__raw_spin_unlock,其源代码如下:

static inline void __raw_spin_unlock(raw_spinlock_t *lock)
{
    spin_release(&lock->dep_map, 1, _RET_IP_);
    do_raw_spin_unlock(lock);   // 完成主要的解锁工作
    preempt_enable();           // 启动抢占
}
static inline void do_raw_spin_unlock(raw_spinlock_t *lock) __releases(lock)
{
    arch_spin_unlock(&lock->raw_lock);
    __release(lock);
}

arch_spin_unlock函数的代码如下:

static __always_inline void arch_spin_unlock(arch_spinlock_t *lock)
{
    if (TICKET_SLOWPATH_FLAG &&
        static_key_false(&paravirt_ticketlocks_enabled)) {
        __ticket_t head;
        BUILD_BUG_ON(((__ticket_t)NR_CPUS) != NR_CPUS);
        // 主要内容:将head+1;所以现在head>tail表示锁又空闲了。
        head = xadd(&lock->tickets.head, TICKET_LOCK_INC);
        if (unlikely(head & TICKET_SLOWPATH_FLAG)) {
            head &= ~TICKET_SLOWPATH_FLAG;
            __ticket_unlock_kick(lock, (head + TICKET_LOCK_INC));
        }
    } else
        __add(&lock->tickets.head, TICKET_LOCK_INC, UNLOCK_LOCK_PREFIX);
}

所以,解锁的过程就是将head和tail不相等,且重新使能内核抢占的过程。

相关文章
|
3天前
|
安全 算法 网络协议
探索Linux操作系统的内核管理
【5月更文挑战第31天】本文将深入探讨Linux操作系统的内核管理机制,包括其设计原则、主要组件以及它们如何协同工作以提供高效的系统性能。通过分析Linux内核的关键特性和功能,我们将揭示这一开源操作系统如何在各种计算环境中保持其稳定性和灵活性。
|
3天前
|
机器学习/深度学习 人工智能 负载均衡
深度解析:Linux内核调度策略的演变与优化
【5月更文挑战第30天】 随着计算技术的不断进步,操作系统的性能调优成为了提升计算机系统效率的关键。在众多操作系统中,Linux因其开源和高度可定制性而备受青睐。本文将深入剖析Linux操作系统的内核调度策略,追溯其历史演变过程,并重点探讨近年来为适应多核处理器和实时性要求而产生的调度策略优化。通过分析比较不同的调度算法,如CFS(完全公平调度器)、实时调度类和批处理作业的调度需求,本文旨在为系统管理员和开发者提供对Linux调度机制深层次理解,同时指出未来可能的发展趋势。
|
14天前
|
算法 安全 Linux
探索Linux内核的虚拟内存管理
【5月更文挑战第20天】 在本文中,我们将深入探讨Linux操作系统的核心组成部分之一——虚拟内存管理。通过剖析其关键组件和运作机制,揭示虚拟内存如何提供高效的内存抽象,支持庞大的地址空间,以及实现内存保护和共享。文章将重点讨论分页机制、虚拟内存区域(VMAs)的管理、页面置换算法,并简要分析这些技术是如何支撑起现代操作系统复杂而多变的内存需求的。
|
4天前
|
Linux
探索Linux操作系统的内核模块
本文将深入探讨Linux操作系统的核心组成部分——内核模块,揭示其背后的工作机制和实现方式。我们将从内核模块的定义开始,逐步解析其加载、卸载以及与操作系统其他部分的交互过程,最后探讨内核模块在系统性能优化中的关键作用。
|
5天前
|
缓存 算法 安全
探索Linux内核的虚拟内存管理
【5月更文挑战第29天】 在现代操作系统中,虚拟内存是支持多任务处理和内存保护的关键组件。本文深入分析了Linux操作系统中的虚拟内存管理机制,包括其地址空间布局、分页系统以及内存分配策略。我们将探讨虚拟内存如何允许多个进程独立地访问它们自己的地址空间,同时由操作系统管理物理内存资源。此外,文章还将涉及虚拟内存所带来的性能影响及其优化方法。
|
5天前
|
算法 Linux 调度
深度解析:Linux内核的进程调度机制
【5月更文挑战第29天】 在现代操作系统中,尤其是类Unix系统如Linux中,进程调度机制是保证多任务高效运行的核心。本文将深入探讨Linux操作系统内核的进程调度器——负责管理CPU资源分配的关键组件。我们会详细分析其调度策略、调度器的演进及其在多核处理器环境下的表现。通过剖析进程调度器的工作原理和设计哲学,旨在为读者提供一个清晰的视角来理解这一复杂的系统功能。
11 0
|
12天前
|
存储 算法 Linux
【Linux】程序地址空间 -- 详解 & Linux 2.6 内核进程调度队列 -- 了解
【Linux】程序地址空间 -- 详解 & Linux 2.6 内核进程调度队列 -- 了解
|
12天前
|
算法 Linux 调度
【进程调度】Linux内核的进程调度队列--runqueue
【进程调度】Linux内核的进程调度队列--runqueue
|
12天前
|
缓存 网络协议 算法
Linux内核必读五本书籍(强烈推荐)
Linux内核必读五本书籍(强烈推荐)
45 0
|
19天前
|
NoSQL Ubuntu Linux
【操作系统】实验三 编译 Linux 内核
【操作系统】实验三 编译 Linux 内核
30 1