【Python三体问题】

简介: 【Python三体问题】

周期稳态三体问题

三体问题(Three-body problem)是天体力学中的基本力学模型。它是指三个质量、初始位置和初始速度都是任意的可视为质点的天体,在相互之间万有引力的作用下的运动规律问题。例如太阳系中,考虑太阳、地球和月球的运动,它们彼此以万有引力相吸引,若假设三个星球都可设为质点,并且忽略其他星球的引力,太阳、地球和月球的运动即可以视为三体问题。

1.png

现在已知,三体问题不能使用解析方法精确求解,即无法预测所有三体问题的数学情景,只有几种特殊情况已研究。对三体问题的数值解,会面临混沌系统的初值敏感问题。

作业题目


修改下方示例代码的初始条件和求解器参数,计算一个平面三体运动的周期性稳定解,并作图展示。

参考资料

https://observablehq.com/@rreusser/periodic-planar-three-body-orbits

https://numericaltank.sjtu.edu.cn/three-body/three-body.htm

示例代码

import numpy as np
from scipy import integrate
def f(t, y, args):
    G, m_A, m_B, m_C = args
    pos_A, pos_B, pos_C, vel_A, vel_B, vel_C = y[:3], y[3:6], y[6:9], y[9:12], y[12:15], y[15:]
    r_AB = np.sqrt(np.sum((pos_A-pos_B)**2))
    r_BC = np.sqrt(np.sum((pos_B-pos_C)**2))
    r_CA = np.sqrt(np.sum((pos_C-pos_A)**2))
    F_A = m_A * m_B * G*(pos_B-pos_A)/r_AB**3 + m_C * m_A * G*(pos_C-pos_A)/r_CA**3
    F_B = m_A * m_B * G*(pos_A-pos_B)/r_AB**3 + m_C * m_B * G*(pos_C-pos_B)/r_BC**3
    F_C = m_A * m_C * G*(pos_A-pos_C)/r_CA**3 + m_C * m_B * G*(pos_B-pos_C)/r_BC**3
    return np.hstack((vel_A, vel_B, vel_C, F_A/m_A, F_B/m_B, F_C/m_C))
G = 10.
m_A = 1.
m_B = 1.
m_C = 1.
args = (G, m_A, m_B, m_C)
pos_A = np.array([0., 0., 0.])
vel_A = np.array([2., 0., 0.])
pos_B = np.array([2., 0., 0.])
vel_B = np.array([-1., np.sqrt(3), 0.])
pos_C = np.array([1., np.sqrt(3), 0.])
vel_C = np.array([-1., -np.sqrt(3), 0.])
'''Initial condition y0 must be one-dimensional'''
y0 = np.hstack((pos_A, pos_B, pos_C, vel_A, vel_B, vel_C))
t = np.linspace(0, 10, 5000)
r = integrate.ode(f)
r.set_integrator('vode', method = 'adams')
r.set_initial_value(y0, t[0])
r.set_f_params(args)
dt = t[1] - t[0]
y_t = np.zeros((len(t), len(y0)))
idx = 0
while r.successful() and r.t < t[-1]+1e-5:
    y_t[idx, :] = r.y
    r.integrate(r.t + dt)
    idx += 1
import bqplot as bq
from bqplot import pyplot as plt
figure = plt.figure(title='Bqplot Plot')
figure.layout.height = '600px'
figure.layout.width = '600px'
plot_A = plt.plot(y_t[:, 0],y_t[:, 1], 'r')  # A
plot_B = plt.plot(y_t[:, 3],y_t[:, 4], 'b')  # B
plot_C = plt.plot(y_t[:, 6],y_t[:, 7], 'g')  # C
scatter_A = plt.scatter(y_t[:2, 0],y_t[:2, 1], colors=["red"])
scatter_B = plt.scatter(y_t[:2, 3],y_t[:2, 4], colors=["blue"])
scatter_C = plt.scatter(y_t[:2, 6],y_t[:2, 7], colors=["green"])
plt.show()


2.png

'''Animation'''
import time
idx = 0
speed = 10
T1 = time.time()
i = 0
for idx in range(1, len(t)-1, speed):  # Update Chart
    scatter_A.x = y_t[idx:idx+2, 0]
    x = np.array(y_t[idx:idx+2, 0])
    scatter_A.y = y_t[idx:idx+2, 1]
    y = np.array(y_t[idx:idx+2, 1])
    if ((abs(x[0])<0.015)& (abs(y[0])<0.015)):
        T2 = time.time()
        print(str(i)+'T周期:%s秒'% (T2 - T1))
        i +=1
    scatter_B.x = y_t[idx:idx+2, 3]
    scatter_B.y = y_t[idx:idx+2, 4]
    scatter_C.x = y_t[idx:idx+2, 6]
    scatter_C.y = y_t[idx:idx+2, 7]
    time.sleep(0.01)

3.png

4.gif

目录
相关文章
|
6月前
|
5G Python
Python 的十万个为什么?
Python 的十万个为什么?
30 3
|
6天前
|
算法 Unix 数据库
Python 特点
Python 特点。
13 4
|
1月前
|
数据库 Python
Python 应用
【10月更文挑战第8天】Python 应用
19 4
|
3月前
|
JSON 缓存 测试技术
Python 中的 OrderedDict
【8月更文挑战第23天】
144 0
|
4月前
|
机器学习/深度学习 数据采集 前端开发
Python适合做什么?
Python适合做什么?【7月更文挑战第7天】
45 4
|
Python
Python|取珠宝问题
Python|取珠宝问题
73 0
|
机器学习/深度学习 XML 存储
认识 Python
人生苦短,我用 Python —— Life is short, you need Python
python
alink
90 0
|
数据采集 运维 算法