Android10.0(Q) 网络自动校时bug修改

简介: Android10.0(Q) 网络自动校时bug修改

问题现象


联网后系统时间依旧显示不对,和系统校时服务器有关系,之前低版本也修改过这个问题来着


修改方法


和之前低版本比对发现,以前的 NetworkTimeUpdateService 已经更名为 NewNetworkTimeUpdateService,而且代码变动不小,根据之前修改问题不大。

frameworks/base/services/core/java/com/android/server/NewNetworkTimeUpdateService.java

import java.io.PrintWriter;
//M: For multiple NTP server retry
import java.util.ArrayList;
import android.os.AsyncTask;
import android.net.NetworkInfo;
+
 /**
  * Monitors the network time and updates the system time if it is out of sync
  * and there hasn't been any NITZ update from the carrier recently.
@@ -98,6 +103,18 @@ public class NewNetworkTimeUpdateService extends Binder implements NetworkTimeUp
     // connection to happen.
     private int mTryAgainCounter;
     //UGG add ,add ntp servers [S]                                         
    private static final String[] NTPSERVERLIST =  new String[]{
                                            "s1b.time.edu.cn",
                                            "ntp3.aliyun.com",
                                            "ntp4.aliyun.com",
                                            "ntp5.aliyun.com",                                
                                             };                                        
    private AsyncTask ntpTimeTask;  
    private boolean isNtpTimeTaskRunning;  
    //UGG add ,add ntp servers [E] 
     public NewNetworkTimeUpdateService(Context context) {
         mContext = context;
         mTime = NtpTrustedTime.getInstance(context);
@@ -138,6 +155,7 @@ public class NewNetworkTimeUpdateService extends Binder implements NetworkTimeUp
     private void registerForTelephonyIntents() {
         IntentFilter intentFilter = new IntentFilter();
         intentFilter.addAction(TelephonyIntents.ACTION_NETWORK_SET_TIME);
        intentFilter.addAction(ConnectivityManager.CONNECTIVITY_ACTION);
         mContext.registerReceiver(mNitzReceiver, intentFilter);
     }
@@ -249,10 +267,49 @@ public class NewNetworkTimeUpdateService extends Binder implements NetworkTimeUp
             if (DBG) Log.d(TAG, "Received " + action);
             if (TelephonyIntents.ACTION_NETWORK_SET_TIME.equals(action)) {
                 mNitzTimeSetTime = SystemClock.elapsedRealtime();
            }else if (ConnectivityManager.CONNECTIVITY_ACTION.equals(action)) {
                //UGG add ,add ntp servers [S]                                         
                NetworkInfo info = mCM.getActiveNetworkInfo();  
                if(info != null && info.isAvailable()) {
                    String name = info.getTypeName();
                    Log.d(TAG, "current networkType" + name);
                    if(!isNtpTimeTaskRunning){
                        isNtpTimeTaskRunning=true;
                        new NtpTimeThread().start();
                    }
                } else {
                    Log.d(TAG, "no available network");
                    // if(ntpTimeTask!=null){
                    //     ntpTimeTask.cancel(true);
                    // }
                }
                //UGG add ,add ntp servers [E]                                         
             }
         }
     };
    //UGG add ,add ntp servers [S]                                         
   public class NtpTimeThread extends Thread {
        @Override
        public void run() {
            super.run();
            for(int i=0;i<NTPSERVERLIST.length;i++){
                try{
                    sleep(1000);
                    boolean result=GetNtpTIme.GetLocalNtpTime(NTPSERVERLIST[i]);
                    Log.i(TAG,"NtpTimeThread result "+result);
                        if(result){
                            break;
                        }
                    }catch(Exception e){
                    }
            }
            isNtpTimeTaskRunning=false;
        }
    }
    //UGG add ,add ntp servers [S]    
     /** Handler to do the network accesses on */
     private class MyHandler extends Handler {

同级目录下新增 GetNtpTIme.java 和 NtpMessage.java

frameworks/base/services/core/java/com/android/server/GetNtpTIme.java


package com.android.server;
import java.io.IOException;
import java.io.InterruptedIOException;
import java.net.ConnectException;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.InetAddress;
import java.net.NoRouteToHostException;
import java.net.UnknownHostException;
import java.util.Date;
import android.os.SystemClock;
import android.util.Log;
public class GetNtpTIme {
  private static String TAG="NetworkTimeUpdateService.GetNtpTIme";
  public static boolean GetLocalNtpTime(String ntpSvrIP) {
    boolean res = false;
    int retry = 0;
    int port = 123;
    int timeout = 10000;
    // get the address and NTP address request
    InetAddress ipv4Addr = null;
    try {
      if(ntpSvrIP==null){
        ipv4Addr = InetAddress.getByName("s1b.time.edu.cn");
      }else{
        ipv4Addr = InetAddress.getByName(ntpSvrIP);
      }
      Log.d(TAG, "ntpSvrIP : " + ntpSvrIP+", ipv4Addr : "+ipv4Addr);
    } catch (UnknownHostException e1) {
      e1.printStackTrace();
    }
    int serviceStatus = -1;
    DatagramSocket socket = null;
    long responseTime = -1;
    try {
      socket = new DatagramSocket();
      socket.setSoTimeout(timeout); // will force the
      // InterruptedIOException
      for (int attempts = 0; attempts <= retry && serviceStatus != 1; attempts++) {
        try {
          // Send NTP request
          byte[] data = new NtpMessage().toByteArray();
          DatagramPacket outgoing = new DatagramPacket(data,
              data.length, ipv4Addr, port);
          long sentTime = System.currentTimeMillis();
          socket.send(outgoing);
          // Get NTP Response
          DatagramPacket incoming = new DatagramPacket(data,
              data.length);
          socket.receive(incoming);
          responseTime = System.currentTimeMillis() - sentTime;
          double destinationTimestamp = (System.currentTimeMillis() / 1000.0) + 2208988800.0;
          // 这里要加2208988800,是因为获得到的时间是格林尼治时间,所以要变成东八区的时间,否则会与与北京时间有8小时的时差
          // Validate NTP Response
          // IOException thrown if packet does not decode as expected.
          NtpMessage msg = new NtpMessage(incoming.getData());
          double localClockOffset = ((msg.receiveTimestamp - msg.originateTimestamp) + (msg.transmitTimestamp - destinationTimestamp)) / 2;
          Log.d(TAG,"poll: valid NTP request received the local clock offset is "
                  + localClockOffset + ", responseTime= "
                  + responseTime + "ms");
          Log.d(TAG, "poll: NTP message : " + msg.toString());
          SystemClock.setCurrentTimeMillis(msg.GetCurrentMS(msg.transmitTimestamp));
          serviceStatus = 1;
          res = true;
        } catch (Exception ex1) {
          // Ignore, no response received.
          Log.d(TAG, "InterruptedIOException: "
          + ex1.toString());
        }
      }
    } catch (NoRouteToHostException e) {
      Log.d(TAG, "No route to host exception for address: "
          + ipv4Addr);
    } catch (ConnectException e) {
      // Connection refused. Continue to retry.
      e.fillInStackTrace();
      Log.d(TAG, "Connection exception for address: " + ipv4Addr);
    } catch (IOException ex) {
      ex.fillInStackTrace();
      Log.d(TAG, "IOException while polling address: " + ipv4Addr);
    } finally {
      if (socket != null){
        socket.close();
        Log.d(TAG, "ntp address: " + ipv4Addr+" res:"+String.valueOf(res));
        return res;
      }
    }
    // Store response time if available
    //
    if (serviceStatus == 1) {
      Log.d(TAG, "responsetime==" + responseTime);
    }
    return res;
  }
}

frameworks/base/services/core/java/com/android/server/NtpMessage.java

package com.android.server;
import java.text.DecimalFormat;
import java.text.SimpleDateFormat;
import java.util.Date;
public class NtpMessage {  
    /** *//** 
     * This is a two-bit code warning of an impending leap second to be 
     * inserted/deleted in the last minute of the current day. It''s values may 
     * be as follows: 
     *  
     * Value Meaning ----- ------- 0 no warning 1 last minute has 61 seconds 2 
     * last minute has 59 seconds) 3 alarm condition (clock not synchronized) 
     */  
    public byte leapIndicator = 0;  
    /** *//** 
     * This value indicates the NTP/SNTP version number. The version number is 3 
     * for Version 3 (IPv4 only) and 4 for Version 4 (IPv4, IPv6 and OSI). If 
     * necessary to distinguish between IPv4, IPv6 and OSI, the encapsulating 
     * context must be inspected. 
     */  
    public byte version = 3;  
    /** *//** 
     * This value indicates the mode, with values defined as follows: 
     *  
     * Mode Meaning ---- ------- 0 reserved 1 symmetric active 2 symmetric 
     * passive 3 client 4 server 5 broadcast 6 reserved for NTP control message 
     * 7 reserved for private use 
     *  
     * In unicast and anycast modes, the client sets this field to 3 (client) in 
     * the request and the server sets it to 4 (server) in the reply. In 
     * multicast mode, the server sets this field to 5 (broadcast). 
     */  
    public byte mode = 0;  
    /** *//** 
     * This value indicates the stratum level of the local clock, with values 
     * defined as follows: 
     *  
     * Stratum Meaning ---------------------------------------------- 0 
     * unspecified or unavailable 1 primary reference (e.g., radio clock) 2-15 
     * secondary reference (via NTP or SNTP) 16-255 reserved 
     */  
    public short stratum = 0;  
    /** *//** 
     * This value indicates the maximum interval between successive messages, in 
     * seconds to the nearest power of two. The values that can appear in this 
     * field presently range from 4 (16 s) to 14 (16284 s); however, most 
     * applications use only the sub-range 6 (64 s) to 10 (1024 s). 
     */  
    public byte pollInterval = 0;  
    /** *//** 
     * This value indicates the precision of the local clock, in seconds to the 
     * nearest power of two. The values that normally appear in this field 
     * range from -6 for mains-frequency clocks to -20 for microsecond clocks 
     * found in some workstations. 
     */  
    public byte precision = 0;  
    /** *//** 
     * This value indicates the total roundtrip delay to the primary reference 
     * source, in seconds. Note that this variable can take on both positive and 
     * negative values, depending on the relative time and frequency offsets. 
     * The values that normally appear in this field range from negative values 
     * of a few milliseconds to positive values of several hundred milliseconds. 
     */  
    public double rootDelay = 0;  
    /** *//** 
     * This value indicates the nominal error relative to the primary reference 
     * source, in seconds. The values that normally appear in this field range 
     * from 0 to several hundred milliseconds. 
     */  
    public double rootDispersion = 0;  
    /** *//** 
     * This is a 4-byte array identifying the particular reference source. In 
     * the case of NTP Version 3 or Version 4 stratum-0 (unspecified) or 
     * stratum-1 (primary) servers, this is a four-character ASCII string, left 
     * justified and zero padded to 32 bits. In NTP Version 3 secondary servers, 
     * this is the 32-bit IPv4 address of the reference source. In NTP Version 4 
     * secondary servers, this is the low order 32 bits of the latest transmit 
     * timestamp of the reference source. NTP primary (stratum 1) servers should 
     * set this field to a code identifying the external reference source 
     * according to the following list. If the external reference is one of 
     * those listed, the associated code should be used. Codes for sources not 
     * listed can be contrived as appropriate. 
     *  
     * Code External Reference Source ---- ------------------------- LOCL 
     * uncalibrated local clock used as a primary reference for a subnet without 
     * external means of synchronization PPS atomic clock or other 
     * pulse-per-second source individually calibrated to national standards 
     * ACTS NIST dialup modem service USNO USNO modem service PTB PTB (Germany) 
     * modem service TDF Allouis (France) Radio 164 kHz DCF Mainflingen 
     * (Germany) Radio 77.5 kHz MSF Rugby (UK) Radio 60 kHz WWV Ft. Collins (US) 
     * Radio 2.5, 5, 10, 15, 20 MHz WWVB Boulder (US) Radio 60 kHz WWVH Kaui 
     * Hawaii (US) Radio 2.5, 5, 10, 15 MHz CHU Ottawa (Canada) Radio 3330, 
     * 7335, 14670 kHz LORC LORAN-C radionavigation system OMEG OMEGA 
     * radionavigation system GPS Global Positioning Service GOES Geostationary 
     * Orbit Environment Satellite 
     */  
    public byte[] referenceIdentifier = { 0, 0, 0, 0 };  
    /** *//** 
     * This is the time at which the local clock was last set or corrected, in 
     * seconds since 00:00 1-Jan-1900. 
     */  
    public double referenceTimestamp = 0;  
    /** *//** 
     * This is the time at which the request departed the client for the server, 
     * in seconds since 00:00 1-Jan-1900. 
     */  
    public double originateTimestamp = 0;  
    /** *//** 
     * This is the time at which the request arrived at the server, in seconds 
     * since 00:00 1-Jan-1900. 
     */  
    public double receiveTimestamp = 0;  
    /** *//** 
     * This is the time at which the reply departed the server for the client, 
     * in seconds since 00:00 1-Jan-1900. 
     */  
    public double transmitTimestamp = 0;  
    /** *//** 
     * Constructs a new NtpMessage from an array of bytes. 
     */  
    public NtpMessage(byte[] array) {  
        // See the packet format diagram in RFC 2030 for details  
        leapIndicator = (byte) ((array[0] >> 6) & 0x3);  
        version = (byte) ((array[0] >> 3) & 0x7);  
        mode = (byte) (array[0] & 0x7);  
        stratum = unsignedByteToShort(array[1]);  
        pollInterval = array[2];  
        precision = array[3];  
        rootDelay = (array[4] * 256.0) + unsignedByteToShort(array[5]) + (unsignedByteToShort(array[6]) / 256.0) + (unsignedByteToShort(array[7]) / 65536.0);  
        rootDispersion = (unsignedByteToShort(array[8]) * 256.0) + unsignedByteToShort(array[9]) + (unsignedByteToShort(array[10]) / 256.0) + (unsignedByteToShort(array[11]) / 65536.0);  
        referenceIdentifier[0] = array[12];  
        referenceIdentifier[1] = array[13];  
        referenceIdentifier[2] = array[14];  
        referenceIdentifier[3] = array[15];  
        referenceTimestamp = decodeTimestamp(array, 16);  
        originateTimestamp = decodeTimestamp(array, 24);  
        receiveTimestamp = decodeTimestamp(array, 32);  
        transmitTimestamp = decodeTimestamp(array, 40);  
    }  
    /** *//** 
     * Constructs a new NtpMessage 
     */  
    public NtpMessage(byte leapIndicator, byte version, byte mode, short stratum, byte pollInterval, byte precision, double rootDelay, double rootDispersion, byte[] referenceIdentifier, double referenceTimestamp, double originateTimestamp, double receiveTimestamp, double transmitTimestamp) {  
        // ToDo: Validity checking  
        this.leapIndicator = leapIndicator;  
        this.version = version;  
        this.mode = mode;  
        this.stratum = stratum;  
        this.pollInterval = pollInterval;  
        this.precision = precision;  
        this.rootDelay = rootDelay;  
        this.rootDispersion = rootDispersion;  
        this.referenceIdentifier = referenceIdentifier;  
        this.referenceTimestamp = referenceTimestamp;  
        this.originateTimestamp = originateTimestamp;  
        this.receiveTimestamp = receiveTimestamp;  
        this.transmitTimestamp = transmitTimestamp;  
    }  
    /** *//** 
     * Constructs a new NtpMessage in client -> server mode, and sets the 
     * transmit timestamp to the current time. 
     */  
    public NtpMessage() {  
        // Note that all the other member variables are already set with  
        // appropriate default values.  
        this.mode = 3;  
        this.transmitTimestamp = (System.currentTimeMillis() / 1000.0) + 2208988800.0;  
    }  
    /** *//** 
     * This method constructs the data bytes of a raw NTP packet. 
     */  
    public byte[] toByteArray() {  
        // All bytes are automatically set to 0  
        byte[] p = new byte[48];  
        p[0] = (byte) (leapIndicator << 6 | version << 3 | mode);  
        p[1] = (byte) stratum;  
        p[2] = (byte) pollInterval;  
        p[3] = (byte) precision;  
        // root delay is a signed 16.16-bit FP, in Java an int is 32-bits  
        int l = (int) (rootDelay * 65536.0);  
        p[4] = (byte) ((l >> 24) & 0xFF);  
        p[5] = (byte) ((l >> 16) & 0xFF);  
        p[6] = (byte) ((l >> 8) & 0xFF);  
        p[7] = (byte) (l & 0xFF);  
        // root dispersion is an unsigned 16.16-bit FP, in Java there are no  
        // unsigned primitive types, so we use a long which is 64-bits  
        long ul = (long) (rootDispersion * 65536.0);  
        p[8] = (byte) ((ul >> 24) & 0xFF);  
        p[9] = (byte) ((ul >> 16) & 0xFF);  
        p[10] = (byte) ((ul >> 8) & 0xFF);  
        p[11] = (byte) (ul & 0xFF);  
        p[12] = referenceIdentifier[0];  
        p[13] = referenceIdentifier[1];  
        p[14] = referenceIdentifier[2];  
        p[15] = referenceIdentifier[3];  
        encodeTimestamp(p, 16, referenceTimestamp);  
        encodeTimestamp(p, 24, originateTimestamp);  
        encodeTimestamp(p, 32, receiveTimestamp);  
        encodeTimestamp(p, 40, transmitTimestamp);  
        return p;  
    }  
    /** *//** 
     * Returns a string representation of a NtpMessage 
     */  
    public String toString() {  
        String precisionStr = new DecimalFormat("0.#E0").format(Math.pow(2, precision));  
        return "Leap indicator: " + leapIndicator + " " + "Version: " + version + " " + "Mode: " + mode + " " + "Stratum: " + stratum + " " + "Poll: " + pollInterval + " " + "Precision: " + precision + " (" + precisionStr + " seconds) " + "Root delay: " + new DecimalFormat("0.00").format(rootDelay * 1000) + " ms " + "Root dispersion: " + new DecimalFormat("0.00").format(rootDispersion * 1000) + " ms " + "Reference identifier: " + referenceIdentifierToString(referenceIdentifier, stratum, version) + " " + "Reference timestamp: " + timestampToString(referenceTimestamp) + " " + "Originate timestamp: " + timestampToString(originateTimestamp) + " " + "Receive timestamp:   " + timestampToString(receiveTimestamp) + " " + "Transmit timestamp: " + timestampToString(transmitTimestamp);  
    }  
    /** *//** 
     * Converts an unsigned byte to a short. By default, Java assumes that a 
     * byte is signed. 
     */  
    public static short unsignedByteToShort(byte b) {  
        if ((b & 0x80) == 0x80)  
            return (short) (128 + (b & 0x7f));  
        else  
            return (short) b;  
    }  
    /** *//** 
     * Will read 8 bytes of a message beginning at <code>pointer</code> and 
     * return it as a double, according to the NTP 64-bit timestamp format. 
     */  
    public static double decodeTimestamp(byte[] array, int pointer) {  
        double r = 0.0;  
        for (int i = 0; i < 8; i++) {  
            r += unsignedByteToShort(array[pointer + i]) * Math.pow(2, (3 - i) * 8);  
        }  
        return r;  
    }  
    /** *//** 
     * Encodes a timestamp in the specified position in the message 
     */  
    public static void encodeTimestamp(byte[] array, int pointer, double timestamp) {  
        // Converts a double into a 64-bit fixed point  
        for (int i = 0; i < 8; i++) {  
            // 2^24, 2^16, 2^8, .. 2^-32  
            double base = Math.pow(2, (3 - i) * 8);  
            // Capture byte value  
            array[pointer + i] = (byte) (timestamp / base);  
            // Subtract captured value from remaining total  
            timestamp = timestamp - (double) (unsignedByteToShort(array[pointer + i]) * base);  
        }  
        // From RFC 2030: It is advisable to fill the non-significant  
        // low order bits of the timestamp with a random, unbiased  
        // bitstring, both to avoid systematic roundoff errors and as  
        // a means of loop detection and replay detection.  
        array[7] = (byte) (Math.random() * 255.0);  
    }  
    /** *//** 
     * Returns a timestamp (number of seconds since 00:00 1-Jan-1900) as a 
     * formatted date/time string. 
     */  
    public static String timestampToString(double timestamp) {  
        if (timestamp == 0)  
            return "0";  
        // timestamp is relative to 1900, utc is used by Java and is relative  
        // to 1970  
        double utc = timestamp - (2208988800.0);  
        // milliseconds  
        long ms = (long) (utc * 1000.0);  
        // date/time  
        String date = new SimpleDateFormat("dd-MMM-yyyy HH:mm:ss").format(new Date(ms));  
        // fraction  
        double fraction = timestamp - ((long) timestamp);  
        String fractionSting = new DecimalFormat(".000000").format(fraction);  
        return date + fractionSting;  
    }  
    public long GetCurrentMS(double timestamp){
        if (timestamp == 0)  
            return 0;  
        // timestamp is relative to 1900, utc is used by Java and is relative  
        // to 1970  
        double utc = timestamp - (2208988800.0);  
        // milliseconds  
        long ms = (long) (utc * 1000.0);  
        return ms;
    }
    /** *//** 
     * Returns a string representation of a reference identifier according to 
     * the rules set out in RFC 2030. 
     */  
    public static String referenceIdentifierToString(byte[] ref, short stratum, byte version) {  
        // From the RFC 2030:  
        // In the case of NTP Version 3 or Version 4 stratum-0 (unspecified)  
        // or stratum-1 (primary) servers, this is a four-character ASCII  
        // string, left justified and zero padded to 32 bits.  
        if (stratum == 0 || stratum == 1) {  
            return new String(ref);  
        }  
        // In NTP Version 3 secondary servers, this is the 32-bit IPv4  
        // address of the reference source.  
        else if (version == 3) {  
            return unsignedByteToShort(ref[0]) + "." + unsignedByteToShort(ref[1]) + "." + unsignedByteToShort(ref[2]) + "." + unsignedByteToShort(ref[3]);  
        }  
        // In NTP Version 4 secondary servers, this is the low order 32 bits  
        // of the latest transmit timestamp of the reference source.  
        else if (version == 4) {  
            return "" + ((unsignedByteToShort(ref[0]) / 256.0) + (unsignedByteToShort(ref[1]) / 65536.0) + (unsignedByteToShort(ref[2]) / 16777216.0) + (unsignedByteToShort(ref[3]) / 4294967296.0));  
        }  
        return "";  
    }  
}  



目录
相关文章
|
2月前
|
网络协议 Shell 网络安全
解决两个 Android 模拟器之间无法网络通信的问题
让同一个 PC 上运行的两个 Android 模拟器之间能相互通信,出(qiong)差(ren)的智慧。
34 3
|
4月前
|
安全 网络安全 Android开发
安卓与iOS开发:选择的艺术网络安全与信息安全:漏洞、加密与意识的交织
【8月更文挑战第20天】在数字时代,安卓和iOS两大平台如同两座巍峨的山峰,分别占据着移动互联网的半壁江山。它们各自拥有独特的魅力和优势,吸引着无数开发者投身其中。本文将探讨这两个平台的特点、优势以及它们在移动应用开发中的地位,帮助读者更好地理解这两个平台的差异,并为那些正在面临选择的开发者提供一些启示。
132 56
|
2月前
|
网络协议 Java API
【网络】TCP回显服务器和客户端的构造,以及相关bug解决方法
【网络】TCP回显服务器和客户端的构造,以及相关bug解决方法
72 2
|
4月前
|
安全 网络安全 Android开发
探索安卓开发之旅:从新手到专家网络安全与信息安全:防范网络威胁,保护数据安全
【8月更文挑战第29天】在这篇技术性文章中,我们将踏上一段激动人心的旅程,探索安卓开发的世界。无论你是刚开始接触编程的新手,还是希望提升技能的资深开发者,这篇文章都将为你提供宝贵的知识和指导。我们将从基础概念入手,逐步深入到安卓开发的高级主题,包括UI设计、数据存储、网络通信等方面。通过阅读本文,你将获得一个全面的安卓开发知识体系,并学会如何将这些知识应用到实际项目中。让我们一起开启这段探索之旅吧!
|
4月前
|
Java Android开发 Kotlin
Android项目架构设计问题之要在Glide库中加载网络图片到ImageView如何解决
Android项目架构设计问题之要在Glide库中加载网络图片到ImageView如何解决
42 0
|
4月前
|
Java Android开发 开发者
Android项目架构设计问题之使用Retrofit2作为网络库如何解决
Android项目架构设计问题之使用Retrofit2作为网络库如何解决
78 0
|
6月前
|
缓存 JSON 网络协议
Android面试题:App性能优化之电量优化和网络优化
这篇文章讨论了Android应用的电量和网络优化。电量优化涉及Doze和Standby模式,其中应用可能需要通过用户白名单或电池广播来适应限制。Battery Historian和Android Studio的Energy Profile是电量分析工具。建议减少不必要的操作,延迟非关键任务,合并网络请求。网络优化包括HTTPDNS减少DNS解析延迟,Keep-Alive复用连接,HTTP/2实现多路复用,以及使用protobuf和gzip压缩数据。其他策略如使用WebP图像格式,按网络质量提供不同分辨率的图片,以及启用HTTP缓存也是有效手段。
98 9
|
6月前
|
缓存 网络协议 安全
Android网络面试题之Http基础和Http1.0的特点
**HTTP基础:GET和POST关键差异在于参数传递方式(GET在URL,POST在请求体),安全性(POST更安全),数据大小限制(POST无限制,GET有限制),速度(GET较快)及用途(GET用于获取,POST用于提交)。面试中常强调POST的安全性、数据量、数据类型支持及速度。HTTP 1.0引入了POST和HEAD方法,支持多种数据格式和缓存,但每个请求需新建TCP连接。**
57 5
|
6月前
|
安全 网络协议 算法
Android网络基础面试题之HTTPS的工作流程和原理
HTTPS简述 HTTPS基于TCP 443端口,通过CA证书确保服务器身份,使用DH算法协商对称密钥进行加密通信。流程包括TCP握手、证书验证(公钥解密,哈希对比)和数据加密传输(随机数加密,预主密钥,对称加密)。特点是安全但慢,易受特定攻击,且依赖可信的CA。每次请求可能复用Session ID以减少握手。
68 2
|
6月前
|
缓存 网络协议 Android开发
Android网络面试题之Http1.1和Http2.0
HTTP/1.1 引入持久连接和管道机制提升效率,支持分块传输编码和更多请求方式如PUT、PATCH。Host字段指定服务器域名,RANGE用于断点续传。HTTP/2变为二进制协议,实现多工处理,头信息压缩和服务器推送,减少延迟并优化资源加载。HTTP不断发展,从早期的简单传输到后来的高效交互。
78 0
Android网络面试题之Http1.1和Http2.0

热门文章

最新文章