C++ STL学习之【容器适配器】

本文涉及的产品
容器服务 Serverless 版 ACK Serverless,317元额度 多规格
容器服务 Serverless 版 ACK Serverless,952元额度 多规格
容器镜像服务 ACR,镜像仓库100个 不限时长
简介: 适配器(配接器)是 STL 中的六大组件之一,扮演着轴承、转换器的角色,使得 STL 中组件的使用更为灵活,比如 栈和队列 就是属于适配器而非容器,以及神秘的反向迭代器也属于适配器

✨个人主页: 夜 默
🎉所属专栏: C++修行之路
🎊每篇一句: 图片来源

  • A year from now you may wish you had started today.

    • 明年今日,你会希望此时此刻的自己已经开始行动了。

image.png


🌇前言

适配器(配接器)是 STL 中的六大组件之一,扮演着轴承、转换器的角色,使得 STL 中组件的使用更为灵活,比如 栈和队列 就是属于适配器而非容器,以及神秘的反向迭代器也属于适配器

具有多种功能的电源适配器,可以满足多种需求

image.png


🏙️正文

1、适配器模式

从应用角度出发,STL 中的适配器可以分为三类:

  • 容器适配器 container adapters
  • 迭代器适配器 iterator adapters
  • 仿函数适配器 functor adapters

其中,容器适配器 可修改底层为指定容器,如由 vector 构成的栈、由 list 构成的队列;迭代器适配器可以 实现其他容器的反向迭代器(后续介绍);最后的仿函数适配器就厉害了,几乎可以 无限制的创造出各种可能的表达式

本文介绍的是容器适配器,即 队列,最后还会介绍一下常作为这两种容器适配器的默认底层容器 双端队列

image.png

出自 《STL源码剖析》


2、栈 stack

stack 是一种特殊的数据结构,主要特点为 先进后出 FILO,主要操作有:入栈、出栈、查看栈顶元素、判断栈空等;栈在原则上是不允许进行中部或头部操作的,这样会破坏栈结构的完整性

栈在生活中比较少见,比较形象的例子是米缸,最先倒进去的米总是最后才能吃到,这正好契合了栈先进后出的思想

image.png

官方文档中 stack 的接口也是比较少的

image.png

image.png

可以看出,栈有两个模板参数

  • 参数1:T 栈中的元素类型,同时也是底层容器中的元素类型
  • 参数2:Container 实现栈时用到的底层容器,这里为缺省参数,缺省结构为 双端队列 deque

如何优雅的创建一个栈对象?

#include <iostream>
#include <stack>
#include <vector>
#include <list>

using namespace std;

int main()
{
    stack<int> s;    //默认底层容器为 deque

    stack<int, vector<int>> sv;    //显示实例化底层容器为 vector
    
    stack<char, list<char>> sl;    //显示实例化底层容器为 list

    cout << typeid(s).name() << endl;    //查看具体类型
    cout << typeid(sv).name() << endl;
    cout << typeid(sl).name() << endl;

    return 0;
}

image.png

注意:关于参数3 allocator 是空间配置器,这里先不作讲解,后续再学习

2.1、常用接口学习

学习使用接口时,直接使用默认的底层容器即可(不需要传递模板参数2)

因为接口少且非常简单,所以上手起来很方便

#include <iostream>
#include <stack>

using namespace std;

int main()
{
    stack<int> s;    //构造一个栈对象

    cout << "Original:>" << endl;
    cout << "empty(): " << s.empty() << endl;
    cout << "size(): " << s.size() << endl;

    cout << endl << "Push:>" << endl;
    s.push(1);    //入栈3个元素
    s.push(2);
    s.push(3);
    cout << "empty(): " << s.empty() << endl;
    cout << "size(): " << s.size() << endl;
    cout << "top(): " << s.top() << endl;

    cout << endl << "Pop:>" << endl;
    s.pop();    //出栈两次
    s.pop();
    cout << "empty(): " << s.empty() << endl;
    cout << "size(): " << s.size() << endl;
    cout << "top(): " << s.top() << endl;

    return 0;
}

image.png

栈的常用接口就这几个,多用几次就熟悉了

2.2、模拟实现

因为是容器适配器,所以在模拟实现时,需要借助其他容器,这里选择使用 vector

#pragma once
#include <vector>

using namespace std;

namespace Yohifo
{
    //这里选择模板参数2 底层容器 的缺省值为 vector
    template<class T, class Container = vector<int>>
    class stack
    {
    public:
        //需要提供一个带缺省参数的构造函数,因为默认构造函数不接受传参
        stack(const Container& c = Container())
            :_c(c)
        {}

        //不需要显式的去写析构函数,默认生成的够用了
        //同理拷贝构造、赋值重载也不需要

        bool empty() const
        {
            return _c.empty();
        }

        size_t size() const
        {
            return _c.size();
        }

        //top 需要提供两种版本
        T& top()
        {
            return _c.back();
        }

        const T& top() const
        {
            return _c.back();
        }

        //选取的底层容器必须支持尾部操作
        void push(const T& val)
        {
            _c.push_back(val);
        }

        void pop()
        {
            //空栈不能弹出,可在底层容器中检查出来
            _c.pop_back();
        }

    private:
        Container _c;    //成员变量为具体的底层容器
    };
}

适配器的厉害之处就在于 只要底层容器有我需要的函数接口,那么我就可以为其适配出一个容器适配器,比如 vector 构成的栈、list 构成的栈、deque 构成的栈,甚至是 string 也能适配出一个栈,只要符合条件,都可以作为栈的底层容器,当然不同结构的效率不同,因此库中选用的是效率较高的 deque 作为默认底层容器

image.png


3、队列 queue

队列 queue 是另一种特殊的数据结构,遵循先进先出 FIFO,主要操作:入队、出队、判断队空、查看队头尾元素等

队列是一种生活中无处不见的场景,比如食堂打饭、柜台办理业务、排队出车站等等,所谓先来后到,形容的就是队列了

容器适配器.gif

作为容器适配器,queue 官方提供的接口也是一样的少

image.png

image.png

和栈一样,队列也有两个模板参数:

  • 参数1:T 队列中的元素类型,同时也是底层容器中的元素类型
  • 参数2:Container 实现队列时用到的底层容器,这里为缺省参数,缺省结构为 双端队列 deque

双端队列的优点在于高效的头尾操作和极致的空间使用,正好符合 栈和队列 的特殊需求

创建队列对象时,我们也可以指定其底层容器

#include <iostream>
#include<queue>
#include <vector>
#include <list>

using namespace std;

int main()
{
    queue<int> qDeque;    //默认使用 deque
    queue<double, vector<double>> qVector;    //指定使用 vector
    queue<char, list<char>> qList;    //指定使用 list

    cout << typeid(qDeque).name() << endl;    //查看具体类型
    cout << typeid(qVector).name() << endl;
    cout << typeid(qList).name() << endl;
    return 0;
}

image.png

3.1、常用接口学习

queue 中的接口与 stack 差不多,不过 queue 出元素时是在队头操作,同时它支持访问队头、队尾元素,而 stack 只能访问栈顶元素

#include <iostream>
#include <queue>

using namespace std;

int main()
{
    queue<int> q;    //构建出一个队列对象

    cout << "Original:>" << endl;
    cout << "empty(): " << q.empty() << endl;
    cout << "size(): " << q.size() << endl;

    cout << endl << "Push:>" << endl;
    q.push(1);
    q.push(2);
    q.push(3);
    q.push(4);
    q.push(5);
    cout << "empty(): " << q.empty() << endl;
    cout << "size(): " << q.size() << endl;
    cout << "front(): " << q.front() << endl;
    cout << "back(): " << q.back() << endl;

    cout << endl << "Pop:>" << endl;
    q.pop();
    q.pop();
    q.pop();
    cout << "empty(): " << q.empty() << endl;
    cout << "size(): " << q.size() << endl;
    cout << "front(): " << q.front() << endl;
    cout << "back(): " << q.back() << endl;

    return 0;
}

image.png

3.2、模拟实现

队列的模拟实现也是相当简单,这里选用 list 作为底层容器

#pragma once
#include <list>

using namespace std;

namespace Yohifo
{
    template<class T, class Container = list<T>>
    class queue
    {
    public:
        queue(const Container& c = Container())
            :_c(c)
        {}

        //这里也不需要提供拷贝构造、赋值重载、析构函数

        bool empty() const
        {
            return _c.empty();
        }

        size_t size() const
        {
            return _c.size();
        }

        //选取的底层容器中,已经准备好了相关函数,如 front、back
        T& front()
        {
            return _c.front();
        }
        const T& front() const
        {
            return _c.front();
        }

        T& back()
        {
            return _c.back();
        }
        const T& back() const
        {
            return _c.back();
        }

        void push(const T& val)
        {
            _c.push_back(val);    //队列只能尾插
        }

        void pop()
        {
            _c.pop_front();    //队列只能头删
        }

    private:
        Container _c;    //成员变量为指定的底层容器对象
    };
}

队列和栈在进行适配时,都是在调用已有的接口,若是特殊接口,比如 toppushpop 等,进行相应转换即可

  • top -> back 尾元素
  • 栈、队列 push -> push_back 尾插
  • pop -> pop_back 尾删
  • 队列 pop -> pop_front 头删

image.png


4、小结

栈和队列在实际开发中作为一种辅助结构被经常使用,比如内存空间划分中的栈区,设计规则符合栈 FILO;操作系统中的各种队列,如阻塞队列,设计规则符合 队列 FIFO。除此以外,在很多 OJ 题中,都需要借助栈和队列进行解题

image.png


注: 二叉树的最近公共祖先可以借助栈完成时间复杂度 O(N) 的解法

注意:

  • 栈和队列都属于特殊的数据结构,原则上是不支持遍历的,因为一旦进行遍历,其中的数据必然被弹出,因此两者都没有提供迭代器
  • 假设容器没有提供头尾操作,比如 mapset,那么就不能拿它们适配出 栈或队列,强行使用会报错

image.png


5、双端队列 deque(了解)

双端队列是官方指定的底层容器,其结构上的特殊设计决定了它只适合于头尾操作需求高的场景:双端队列 = vector + list,设计时就想汲取二者的优点(下标随机访问 + 极致的空间使用),但鱼和熊掌不可兼得,在复杂结构的加持之下,双端队列趋于中庸,无法做到 vectorlist 那样极致,因此实际中也很少使用,比较适合当作适配器的底层容器

image.png

双端队列的数据结构:list + vector

  • 利用 list 构造出一个 map 作为主控数组(通过链式结构链接),数组中元素为数组指针
  • 利用 vector 构造出大小为 N 的小数组(缓冲区),这些小数组才是双端队列存储元素的地方

注意:此处的 map 并非是容器 map,仅仅是名字相同而已

将二者结合起来,就得到了复杂的双端队列

image.png

deque 的扩容机制:只需要对中控数组 map 进行扩容,再将原 map 中的数组指针拷贝过来即可,效率比较高

deque 中的随机访问:

  1. (下标 - 前预留位) / 单个数组长度 获取对应小数组位置
  2. (下标 - 前预留位) % 单个数组长度 获取其在小数组中的对应下标

由此可见,单个数组大小(缓冲区大小)需要定长,否则访问时计算会比较麻烦,但长度定长后,会引发中间位置插入删除效率低的问题

对此 SGI 版的 STL 选择牺牲中间位置插入,提高下标随机访问速度,令小数组定长,这也是将它作为 栈和队列 默认底层容器的原因之一,因为 栈和队列 不需要对中间进行操作

因为中控数组是链式结构,因此双端队列的迭代器设计极为复杂

  • cur 指向当前需要的数据位置
  • first 指向 buffer 数组起始位置
  • last 指向 buffer 数组终止位置
  • node 反向指向中控数组

image.png

这个迭代器还是一个随机迭代器,因此可以使用 std::sort

  • 无论是 deque 还是 list,直接排序的效率都不如借助 vector 间接排序效率高

deque 的缺点

  • 中间位置插入删除比较麻烦,可以令小数组长度不同解决问题,不过此时影响随机访问效率
  • 结构设计复杂,且不如 vectorlist 极致
  • 致命缺陷:不适合遍历,迭代器需要频繁检测是否移动某段小空间的边界,效率很低

凑巧的是,栈和队列 可以完美避开所有缺陷,全面汲取其优点,因此 双端队列 为容器适配器的默认底层容器

对于这种中庸且复杂的容器,只需要做简单了解就行了


🌆总结

以上就是本篇关于 C++ STL学习之【容器适配器】的全部内容了,在本文中,我们首先学习了适配器默认,了解它存在的意义及种类;其次学习和模拟实现了两种容器适配器 栈和队列;最后认识了容器适配器的默认底层容器 双端队列,见识了其复杂的结构设计及优缺点。关于适配的下一种形态:迭代器适配器 将在下文中学习,同时 反向迭代器 的神秘面纱也将被揭开

如果你觉得本文写的还不错的话,可以留下一个小小的赞👍,你的支持是我分享的最大动力!

如果本文有不足或错误的地方,随时欢迎指出,我会在第一时间改正


image.png

相关文章推荐


==STL 之 list 类==

C++ STL学习之【list的模拟实现】

C++ STL学习之【list的使用】

===============

==STL 之 vector 类==

C++ STL学习之【vector的模拟实现】

C++ STL学习之【vector的使用】

===============

==STL 之 string 类==

C++ STL学习之【string类的模拟实现】

C++ STL 学习之【string】


承蒙厚爱,感谢支持.gif

目录
相关文章
|
1月前
|
存储 算法 C++
C++ STL 初探:打开标准模板库的大门
C++ STL 初探:打开标准模板库的大门
99 10
|
27天前
|
编译器 C语言 C++
配置C++的学习环境
【10月更文挑战第18天】如果想要学习C++语言,那就需要配置必要的环境和相关的软件,才可以帮助自己更好的掌握语法知识。 一、本地环境设置 如果您想要设置 C++ 语言环境,您需要确保电脑上有以下两款可用的软件,文本编辑器和 C++ 编译器。 二、文本编辑器 通过编辑器创建的文件通常称为源文件,源文件包含程序源代码。 C++ 程序的源文件通常使用扩展名 .cpp、.cp 或 .c。 在开始编程之前,请确保您有一个文本编辑器,且有足够的经验来编写一个计算机程序,然后把它保存在一个文件中,编译并执行它。 Visual Studio Code:虽然它是一个通用的文本编辑器,但它有很多插
|
1月前
|
存储 程序员 C++
C++常用基础知识—STL库(2)
C++常用基础知识—STL库(2)
70 5
|
1月前
|
存储 自然语言处理 程序员
C++常用基础知识—STL库(1)
C++常用基础知识—STL库(1)
53 1
|
1月前
|
算法 安全 Linux
【C++STL简介】——我与C++的不解之缘(八)
【C++STL简介】——我与C++的不解之缘(八)
|
1月前
|
Java 编译器 C++
c++学习,和友元函数
本文讨论了C++中的友元函数、继承规则、运算符重载以及内存管理的重要性,并提到了指针在C++中的强大功能和使用时需要注意的问题。
21 1
|
1月前
|
算法 数据处理 C++
c++ STL划分算法;partition()、partition_copy()、stable_partition()、partition_point()详解
这些算法是C++ STL中处理和组织数据的强大工具,能够高效地实现复杂的数据处理逻辑。理解它们的差异和应用场景,将有助于编写更加高效和清晰的C++代码。
23 0
|
5天前
|
存储 编译器 C++
【c++】类和对象(下)(取地址运算符重载、深究构造函数、类型转换、static修饰成员、友元、内部类、匿名对象)
本文介绍了C++中类和对象的高级特性,包括取地址运算符重载、构造函数的初始化列表、类型转换、static修饰成员、友元、内部类及匿名对象等内容。文章详细解释了每个概念的使用方法和注意事项,帮助读者深入了解C++面向对象编程的核心机制。
27 5
|
12天前
|
存储 编译器 C++
【c++】类和对象(中)(构造函数、析构函数、拷贝构造、赋值重载)
本文深入探讨了C++类的默认成员函数,包括构造函数、析构函数、拷贝构造函数和赋值重载。构造函数用于对象的初始化,析构函数用于对象销毁时的资源清理,拷贝构造函数用于对象的拷贝,赋值重载用于已存在对象的赋值。文章详细介绍了每个函数的特点、使用方法及注意事项,并提供了代码示例。这些默认成员函数确保了资源的正确管理和对象状态的维护。
40 4
|
13天前
|
存储 编译器 Linux
【c++】类和对象(上)(类的定义格式、访问限定符、类域、类的实例化、对象的内存大小、this指针)
本文介绍了C++中的类和对象,包括类的概念、定义格式、访问限定符、类域、对象的创建及内存大小、以及this指针。通过示例代码详细解释了类的定义、成员函数和成员变量的作用,以及如何使用访问限定符控制成员的访问权限。此外,还讨论了对象的内存分配规则和this指针的使用场景,帮助读者深入理解面向对象编程的核心概念。
36 4