Jmeter 测试结果分析之聚合报告简介

简介: Jmeter 测试结果分析之聚合报告简介

Jmeter测试结果分析之聚合报告简介


聚合报告(aggregate report)

对于每个请求,它统计响应信息并提供请求数,平均值,最大,最小值,错误率,大约吞吐量(以请求数/秒为单位)和以kb/秒为单位的吞吐量.

 

吞吐量是以取样目标点的视角来统计的(例如:HTTP请求样例中设置的远程服务器). JMeter会把已生成请求的总响应时间考虑在内,所以,如果相同线程组中有其它取样器或定时器,将增加总时间,进而减少吞吐量的值。因此,两个仅名称不同的取样器,其吞吐量为该两个取样器吞吐量总和的一半。正确的选择取样器名字对于重聚合报告中获取最佳的结果来说很重要。

 

个人理解:不管是否有其它取样器还是定时器,这里主要是基于时间和请求数的计算,吞吐量=请求数/总时间,拿定时器来说,它具有线程延迟功能,不增加请求数的情况下,增大总时间,自然吞吐量就减少了。

 

这笔者做了个实验,每次运行一次,每次手动运行,且每次运行前不清空结果,运行测试,查看聚合报告显示。因为手动运行,每两次运行期间,都有空闲期,在这段空闲期有时候还比较长,几分钟到几十分钟不等。

 

结果发现,聚合报告是累加的,即每次运行的结果统计都是基于前一次运行的结果进行统计,包括发起的请求样本数等都是叠加的,比如我11:00运行一次,发起10个请求,11:20运行一次,发起10个请求,这时聚合报告显示请求数为20个,而此时的吞吐量和第一次运行相差甚远,个人猜测它把11001120期间非运行状态的时间也算进去了。所以,总时间大大增加。

 

不勾选标签中不包含名称(include group name in label复选框

 

 



注意:使用聚合报告时,测试计划中不要用相同的的请求取样器名称

 

表头说明:

Label -如图,在不勾选"Include group name in label?"复选框的情况下,为请求取样器的名称,否则为请求取样器所在线程组:请求取样器名称”,如下

 

 



# Samples -用同一个请求取样器,发送请求的数量(注意:该值是不断累计的)。比如,10个线程数设置为10,迭代10次,那么每运行一次测试,该值就增加10*10=100

 

Average -默认情况下是单个Request的平均响应时间,当使用了Transaction Controller时,也可以以Transaction为单位显示平均响应时间

 

Median -中位数。表示响应时间本不大于该时间值的请求样本数占总数的50%

 

90% Line -表示响应时间不大于该时间值的请求样本数占总数的90%

Min -针对同一请求取样器,请求样本的最小响应时间

 

Max -针对同一请求取样器,请求样本的最大响应时间

 

Error % -出现错误的请求样本的百分比

 

Throughput -吞吐量以“requests/secondrequests /minuterequests /hour”来衡量。时间单位已经被选取为second,所以,显示速率至少是1.0,即每秒1个请求。当吞吐量被保存到CVS文件时,采用的是requests/second,所以30.0 requests/secondCVS中被保存为0.5

 

Kb/sec -Kilobytes/seond来衡量的吞吐量

 

注意:

1.无特别说明,以上时间的单位均为ms

2.请求响应时间指的是从client端发出请求到得到响应的整个时间

 

http://jmeter.apache.org/usermanual/component_reference.html#Aggregate_Report

 

目录
相关文章
|
1月前
|
缓存 监控 算法
软件测试中的性能瓶颈分析与优化策略
【10月更文挑战第6天】 性能测试是确保软件系统在高负载条件下稳定运行的重要手段。本文将深入探讨性能测试的常见瓶颈,包括硬件资源、网络延迟和代码效率等问题。通过具体案例分析,我们将展示如何识别并解决这些问题,从而提升软件的整体性能。最后,文章还将分享一些实用的性能优化技巧,帮助读者在日常开发和测试中更好地应对性能挑战。
88 3
|
1月前
|
测试技术 持续交付 Apache
Python性能测试新风尚:JMeter遇上Locust,性能分析不再难🧐
【10月更文挑战第1天】Python性能测试新风尚:JMeter遇上Locust,性能分析不再难🧐
139 3
|
2月前
|
监控 测试技术 持续交付
软件测试中的性能瓶颈分析与优化策略
性能瓶颈,如同潜伏于软件深处的隐形障碍,悄然阻碍着系统的流畅运行。本文旨在揭示这些瓶颈的形成机理,剖析其背后的复杂成因,并汇聚一系列针对性的优化策略,为软件开发者提供一套系统性的解决方案。
51 5
|
19天前
|
测试技术 持续交付 Apache
Python性能测试新风尚:JMeter遇上Locust,性能分析不再难🧐
Python性能测试新风尚:JMeter遇上Locust,性能分析不再难🧐
43 3
|
17天前
|
缓存 测试技术 Apache
告别卡顿!Python性能测试实战教程,JMeter&Locust带你秒懂性能优化💡
告别卡顿!Python性能测试实战教程,JMeter&Locust带你秒懂性能优化💡
34 1
|
1月前
|
缓存 监控 测试技术
软件测试中的性能瓶颈分析与优化策略
本文深入探讨了在软件测试过程中,如何有效地识别和解决性能瓶颈问题。通过对性能瓶颈的定义、分类以及常见原因的分析,结合实际案例,提出了一系列针对性的优化策略和方法。这些策略旨在帮助测试人员和开发人员提高软件的性能表现,确保软件在高负载条件下依然能够稳定运行。
|
1月前
|
缓存 测试技术 Apache
告别卡顿!Python性能测试实战教程,JMeter&Locust带你秒懂性能优化💡
【10月更文挑战第1天】告别卡顿!Python性能测试实战教程,JMeter&Locust带你秒懂性能优化💡
63 4
|
1月前
|
分布式计算 Hadoop Unix
Hadoop-28 ZooKeeper集群 ZNode简介概念和测试 数据结构与监听机制 持久性节点 持久顺序节点 事务ID Watcher机制
Hadoop-28 ZooKeeper集群 ZNode简介概念和测试 数据结构与监听机制 持久性节点 持久顺序节点 事务ID Watcher机制
42 1
|
2月前
|
测试技术 持续交付 UED
软件测试的艺术与科学:平衡创新与质量的探索在软件开发的波澜壮阔中,软件测试如同灯塔,指引着产品质量的方向。本文旨在深入探讨软件测试的核心价值,通过分析其在现代软件工程中的应用,揭示其背后的艺术性与科学性,并探讨如何在追求技术创新的同时确保产品的高质量标准。
软件测试不仅仅是技术活动,它融合了创造力和方法论,是软件开发过程中不可或缺的一环。本文首先概述了软件测试的重要性及其在项目生命周期中的角色,随后详细讨论了测试用例设计的创新方法、自动化测试的策略与挑战,以及如何通过持续集成/持续部署(CI/CD)流程优化产品质量。最后,文章强调了团队间沟通在确保测试有效性中的关键作用,并通过案例分析展示了这些原则在实践中的应用。
74 1
|
2月前
|
测试技术 数据库 UED
Python 性能测试进阶之路:JMeter 与 Locust 的强强联合,解锁性能极限
【9月更文挑战第9天】在数字化时代,确保软件系统在高并发场景下的稳定性至关重要。Python 为此提供了丰富的性能测试工具,如 JMeter 和 Locust。JMeter 可模拟复杂请求场景,而 Locust 则能更灵活地模拟真实用户行为。结合两者优势,可全面评估系统性能并优化瓶颈。例如,在电商网站促销期间,通过 JMeter 模拟大量登录请求并用 Locust 模拟用户浏览和购物行为,可有效识别并解决性能问题,从而提升系统稳定性和用户体验。这种组合为性能测试开辟了新道路,助力应对复杂挑战。
113 2
下一篇
无影云桌面