iOS MachineLearning 系列(2)—— 静态图像分析之矩形识别

简介: 本系列文章将完整的介绍iOS中Machine Learning相关技术的应用。本篇文章开始,我们将先介绍一些与Machine Learning相关的API的应用。使用这些API可以快速方便的实现很多如图像识别,分析等复杂功能,且不会增加应用安装包的体积。

iOS MachineLearning 系列(2)—— 静态图像分析之矩形识别

本系列文章将完整的介绍iOS中Machine Learning相关技术的应用。本篇文章开始,我们将先介绍一些与Machine Learning相关的API的应用。使用这些API可以快速方便的实现很多如图像识别,分析等复杂功能,且不会增加应用安装包的体积。

本篇将首先介绍如何分析出静态图片中的矩形区域。矩形区域的是被非常重要,其通常用来对要分析的图片进行预处理,例如通过矩形分析截取其中的二维码,条形码部分后再进行精准的识别。

1 - 矩形分析示例

与视觉相关的大部分AI能力都封装在Vision框架中,本文要介绍的是通过发起矩形分析请求来分析图片,得到分析结果后将分析出来的矩形区域绘制回原图像上。

首先定义一些属性:

// 要分析的图片资源
let image = UIImage(named: "image2")!
lazy var imageView = UIImageView(image: image)

// 绘制的矩形区域
var boxViews: [UIView] = []

// 图像分析请求句柄
lazy var imageRequestHandler = VNImageRequestHandler(cgImage: image.cgImage!,
                                                orientation: .up,
                                                options: [:])

// 图像分析请求实例
private lazy var rectangleDetectionRequest: VNDetectRectanglesRequest = {
    let rectDetectRequest = VNDetectRectanglesRequest { request, error in
        DispatchQueue.main.async {
            self.drawTask(request: request as! VNDetectRectanglesRequest)
        }
    }
    // 自定义一些配置项
    // 设置要分析的最大结果个数(矩形个数)
    rectDetectRequest.maximumObservations = 0
    // 设置最低接受的可信值
    rectDetectRequest.minimumConfidence = 0
    // 设置最小接受的纵横比
    rectDetectRequest.minimumAspectRatio = 0.1
    return rectDetectRequest
}()

其中VNDetectRectanglesRequest即是核心的图片分析请求类,VNImageRequestHandler是请求句柄,用来发起请求。后面我们会详细介绍。在开始请求分析之前,我们还需要定义个方法,用来进行矩形区域绘制:

private func drawTask(request: VNDetectRectanglesRequest) {
    // 将之前绘制的删除
    boxViews.forEach { v in
        v.removeFromSuperview()
    }
    // 遍历分析结果
    for result in request.results ?? [] {
        var box = result.boundingBox
        // 坐标系转换
        box.origin.y = 1 - box.origin.y - box.size.height
        let v = UIView()
        v.backgroundColor = .clear
        v.layer.borderColor = UIColor.black.cgColor
        v.layer.borderWidth = 1
        imageView.addSubview(v)
        let size = imageView.frame.size
        v.frame = CGRect(x: box.origin.x * size.width, y: box.origin.y * size.height, width: box.size.width * size.width, height: box.size.height * size.height)
    }
}

需要注意,Vision框架中的坐标系与CoreGraphics框架中的坐标系是一致的,其以左下角点为(0, 0)点,在UIKit框架中则是以左上角点为(0,0)点,记得进行坐标系的转换。

最后,使用下面的代码来发起请求,静态图像的分析将会是一个耗时的过程,因此建议在非主线程中进行:

DispatchQueue.global(qos: .userInitiated).async {
    do {
        // 发起分析请求
        try self.imageRequestHandler.perform([self.rectangleDetectionRequest])
    } catch let error as NSError {
        print("Failed to perform image request: \(error)")
        return
    }
}

分析的结果会在定义VNDetectRectanglesRequest时传入的回调中返回。

你可以用几张图片来实验下检测效果,如下图:

上面图片中的黑色边框就是我们检测出的结果绘制的。

2 - 关于VNDetectRectanglesRequest类

VNDetectRectanglesRequest类用来对核心的分析请求进行定义,并且设置结果回调。VNDetectRectanglesRequest类是专门创建矩形区域识别的请求类,继承自VNImageBasedRequest,VNImageBasedRequest类是静态图像分析请求的基类,继承自VNRequest类。

我们先来看VNRequest类:

@available(iOS 11.0, *)
open class VNRequest : NSObject, NSCopying {
    // 构造方法,无处理回调
    public convenience init()

    // 构造方法其中回调参数定义如下
    // (VNRequest, Error?) -> Void
    // VNRequest为当前实例本身 error是异常(如果有)
    public init(completionHandler: VNRequestCompletionHandler? = nil)

    // 是否开启后台线程模式,此模式会占用更少的内存,CPU,GPU资源,给用户更好的渲染体验,但是会以耗时为代价
    open var preferBackgroundProcessing: Bool

    // 是否允许使用GPU进行加速
    open var usesCPUOnly: Bool

    // 分析结果列表,VNObservation是结果基类,不同的子类实现不同的功能
    open var results: [VNObservation]? { get }
    
    // 处理回调,此回调中会传入当前Request对象,通过内部的results拿到结果
    open var completionHandler: VNRequestCompletionHandler? { get }
    
    // 进行分析的特定算法版本
    open var revision: Int
    // 所支持的算法版本集合
    open class var supportedRevisions: IndexSet { get }
    // 默认的版本
    open class var defaultRevision: Int { get }
    // 当前使用的算法版本
    open class var currentRevision: Int { get }
    // 取消分析请求
    open func cancel()
}

在VNRequest类中封装了一组VNObservation对象,当成功的完成了图像分析任务后,结果会被封装成VNObservation对象,不同的分析任务对应的结果对象也不同,VNObservation是这些结果的基类,其中封装了基础的信息,如下:

@available(iOS 11.0, *)
open class VNObservation : NSObject, NSCopying, NSSecureCoding, VNRequestRevisionProviding {
    // 唯一标识id
    open var uuid: UUID { get }

    // 此结果的可信度,取值0到1之间
    open var confidence: VNConfidence { get }

    // 此结果的有效时间
    @available(iOS 14.0, *)
    open var timeRange: CMTimeRange { get }
}

VNImageBasedReques类是VNRequest的一个子类,其是静态图片分析请求类的基类,其中只封装了一个属性:

@available(iOS 11.0, *)
open class VNImageBasedRequest : VNRequest {
    // 矩形被标准化处理后的尺寸,默认为{{ 0, 0 }, { 1, 1 }}
    open var regionOfInterest: CGRect
}

regionOfInterest属性非常有用,其默认会把我们要处理的图像标准化为单位矩形,返回的结果中的坐标是以此单位矩形为标准的。

最后,我们再来看下VNDetectRectanglesRequest类,这个类即使我们进行矩形区域识别的请求配置类,如下:

@available(iOS 11.0, *)
open class VNDetectRectanglesRequest : VNImageBasedRequest {
    // 设置检测接受的矩形最小的纵横比 VNAspectRatio是Float类型的别名,取值0-1之间
    open var minimumAspectRatio: VNAspectRatio
    
    // 设置检测所接受的最大的纵横比,取值0-1之间
    open var maximumAspectRatio: VNAspectRatio

    // 设置矩形角度可以偏离90度的最大角度,取值0-45之间
    open var quadratureTolerance: VNDegrees
    
    // 设置允许检测到的最小的矩形尺寸,设置为相对原图像比例值0-1之间
    open var minimumSize: Float
    
    // 设置能够接受的最小可信度,0到1之间,小于此可信度的检测结果不会被返回
    open var minimumConfidence: VNConfidence

    // 设置允许检测出的最多结果数,默认为1,设置为0表示不限制,但是Vision框架目前最多支持16
    open var maximumObservations: Int
    
    // 结果数组
    open var results: [VNRectangleObservation]? { get }
}

需要注意,设置最大最小纵横比时,会总是以长的一边作为纵,短的一边作为横。

3 - 关于VNRectangleObservation类

VNRectangleObservatio是矩形区域分析请求的结果类,继承自VNDetectedObjectObservation类,VNDetectedObjectObservation类是VNObservation的子类,其通常与对象的识别有关,其封装了与识别相关的属性,如下:

@available(iOS 11.0, *)
open class VNDetectedObjectObservation : VNObservation {
    // 检测出的区域,注意原点在左下角
    open var boundingBox: CGRect { get }
    // 缓冲区的图像数据
    open var globalSegmentationMask: VNPixelBufferObservation? { get }
}

VNRectangleObservation类则封装了与矩形相关的属性数据:

@available(iOS 11.0, *)
open class VNRectangleObservation : VNDetectedObjectObservation {
    // 左上角位置
    open var topLeft: CGPoint { get }
    // 右上角位置
    open var topRight: CGPoint { get }
    // 左下角位置
    open var bottomLeft: CGPoint { get }
    // 右下角位置
    open var bottomRight: CGPoint { get }
}

理解了请求配置类与分析结果类的用法,剩下的就是请求句柄了。

4 - 关于VNImageRequestHandler类

VNImageRequestHandler类是请求句柄类,更通俗的说,其为分析请求提供了图像数据源,并触发请求。其支持的构造方法如下:

@available(iOS 11.0, *)
open class VNImageRequestHandler : NSObject {
    // 构造方法
    public init(cvPixelBuffer pixelBuffer: CVPixelBuffer, options: [VNImageOption : Any] = [:])
    public init(cvPixelBuffer pixelBuffer: CVPixelBuffer, orientation: CGImagePropertyOrientation, options: [VNImageOption : Any] = [:])
    public init(cgImage image: CGImage, options: [VNImageOption : Any] = [:])
    public init(cgImage image: CGImage, orientation: CGImagePropertyOrientation, options: [VNImageOption : Any] = [:])
    public init(ciImage image: CIImage, options: [VNImageOption : Any] = [:])
    public init(ciImage image: CIImage, orientation: CGImagePropertyOrientation, options: [VNImageOption : Any] = [:])
    public init(url imageURL: URL, options: [VNImageOption : Any] = [:])
    public init(url imageURL: URL, orientation: CGImagePropertyOrientation, options: [VNImageOption : Any] = [:])
    public init(data imageData: Data, options: [VNImageOption : Any] = [:])
    public init(data imageData: Data, orientation: CGImagePropertyOrientation, options: [VNImageOption : Any] = [:])
    public init(cmSampleBuffer sampleBuffer: CMSampleBuffer, options: [VNImageOption : Any] = [:])
    public init(cmSampleBuffer sampleBuffer: CMSampleBuffer, orientation: CGImagePropertyOrientation, options: [VNImageOption : Any] = [:])
}

VNImageRequestHandler类的构造方法很多,但归根结底是要提供三部分内容:

  1. 图片数据源。
  2. 图片的方向。
  3. 额外参数。

其中,图片的数据源可以从二进制数据加载,可以从网络加载,可以从CoreImage或CoreGraphics框架的图片对象加载等等,这里不多赘述。

图片的方向需要在构造句柄实例对象时进行提供,枚举如下:

@frozen public enum CGImagePropertyOrientation : UInt32, @unchecked Sendable {

    
    case up = 1 // 正向 

    case upMirrored = 2 // 水平镜像

    case down = 3 // 180度旋转

    case downMirrored = 4 // 竖直镜像

    case leftMirrored = 5 // 顺时针旋转90度后镜像

    case right = 6 // 顺时针旋转90度

    case rightMirrored = 7 // 逆时针旋转90度后镜像

    case left = 8 // 逆时针旋转90度
}

额外参数可以配置为一个字典对象,提供更多图片数据,支持配置的字段如下:

properties:此键可配置为一个属性字典,参考CGImageSourceCopyPropertiesAtIndex。

cameraIntrinsics:相机内部数据配置。

ciContex:CIContext配置。

最后,调用VNImageRequestHandler类的如下方法即可开始静态图像处理:

open func perform(_ requests: [VNRequest]) throws

同一个图像句柄可以同时发起多种图像处理请求。

注:本文所介绍的示例代码可在如下仓库获取:

https://github.com/ZYHshao/MachineLearnDemo

专注技术,懂的热爱,愿意分享,做个朋友
目录
相关文章
|
1月前
|
开发框架 前端开发 Android开发
Flutter 与原生模块(Android 和 iOS)之间的通信机制,包括方法调用、事件传递等,分析了通信的必要性、主要方式、数据传递、性能优化及错误处理,并通过实际案例展示了其应用效果,展望了未来的发展趋势
本文深入探讨了 Flutter 与原生模块(Android 和 iOS)之间的通信机制,包括方法调用、事件传递等,分析了通信的必要性、主要方式、数据传递、性能优化及错误处理,并通过实际案例展示了其应用效果,展望了未来的发展趋势。这对于实现高效的跨平台移动应用开发具有重要指导意义。
160 4
|
1月前
|
安全 Android开发 数据安全/隐私保护
深入探讨iOS与Android系统安全性对比分析
在移动操作系统领域,iOS和Android无疑是两大巨头。本文从技术角度出发,对这两个系统的架构、安全机制以及用户隐私保护等方面进行了详细的比较分析。通过深入探讨,我们旨在揭示两个系统在安全性方面的差异,并为用户提供一些实用的安全建议。
|
24天前
|
Java 开发工具 Android开发
安卓与iOS开发环境对比分析
在移动应用开发的广阔天地中,安卓和iOS两大平台各自占据半壁江山。本文深入探讨了这两个平台的开发环境,从编程语言、开发工具到用户界面设计等多个角度进行比较。通过实际案例分析和代码示例,我们旨在为开发者提供一个清晰的指南,帮助他们根据项目需求和个人偏好做出明智的选择。无论你是初涉移动开发领域的新手,还是寻求跨平台解决方案的资深开发者,这篇文章都将为你提供宝贵的信息和启示。
29 8
|
28天前
|
安全 Android开发 数据安全/隐私保护
深入探索Android与iOS系统安全性的对比分析
在当今数字化时代,移动操作系统的安全已成为用户和开发者共同关注的重点。本文旨在通过比较Android与iOS两大主流操作系统在安全性方面的差异,揭示两者在设计理念、权限管理、应用审核机制等方面的不同之处。我们将探讨这些差异如何影响用户的安全体验以及可能带来的风险。
34 1
|
2月前
|
开发工具 Android开发 Swift
安卓与iOS开发环境的差异性分析
【10月更文挑战第8天】 本文旨在探讨Android和iOS两大移动操作系统在开发环境上的不同,包括开发语言、工具、平台特性等方面。通过对这些差异性的分析,帮助开发者更好地理解两大平台,以便在项目开发中做出更合适的技术选择。
|
1月前
|
开发框架 前端开发 Android开发
安卓与iOS开发中的跨平台策略
在移动应用开发的战场上,安卓和iOS两大阵营各据一方。随着技术的演进,跨平台开发框架成为开发者的新宠,旨在实现一次编码、多平台部署的梦想。本文将探讨跨平台开发的优势与挑战,并分享实用的开发技巧,帮助开发者在安卓和iOS的世界中游刃有余。
|
9天前
|
iOS开发 开发者 MacOS
深入探索iOS开发中的SwiftUI框架
【10月更文挑战第21天】 本文将带领读者深入了解Apple最新推出的SwiftUI框架,这一革命性的用户界面构建工具为iOS开发者提供了一种声明式、高效且直观的方式来创建复杂的用户界面。通过分析SwiftUI的核心概念、主要特性以及在实际项目中的应用示例,我们将展示如何利用SwiftUI简化UI代码,提高开发效率,并保持应用程序的高性能和响应性。无论你是iOS开发的新手还是有经验的开发者,本文都将为你提供宝贵的见解和实用的指导。
92 66
|
20天前
|
开发框架 Android开发 iOS开发
安卓与iOS开发中的跨平台策略:一次编码,多平台部署
在移动应用开发的广阔天地中,安卓和iOS两大阵营各占一方。随着技术的发展,跨平台开发框架应运而生,它们承诺着“一次编码,到处运行”的便捷。本文将深入探讨跨平台开发的现状、挑战以及未来趋势,同时通过代码示例揭示跨平台工具的实际运用。
|
24天前
|
Java 调度 Android开发
安卓与iOS开发中的线程管理差异解析
在移动应用开发的广阔天地中,安卓和iOS两大平台各自拥有独特的魅力。如同东西方文化的差异,它们在处理多线程任务时也展现出不同的哲学。本文将带你穿梭于这两个平台之间,比较它们在线程管理上的核心理念、实现方式及性能考量,助你成为跨平台的编程高手。
|
26天前
|
存储 前端开发 Swift
探索iOS开发:从新手到专家的旅程
本文将带您领略iOS开发的奇妙之旅,从基础概念的理解到高级技巧的掌握,逐步深入iOS的世界。文章不仅分享技术知识,还鼓励读者在编程之路上保持好奇心和创新精神,实现个人成长与技术突破。