iOS MachineLearning 系列(2)—— 静态图像分析之矩形识别

简介: 本系列文章将完整的介绍iOS中Machine Learning相关技术的应用。本篇文章开始,我们将先介绍一些与Machine Learning相关的API的应用。使用这些API可以快速方便的实现很多如图像识别,分析等复杂功能,且不会增加应用安装包的体积。

iOS MachineLearning 系列(2)—— 静态图像分析之矩形识别

本系列文章将完整的介绍iOS中Machine Learning相关技术的应用。本篇文章开始,我们将先介绍一些与Machine Learning相关的API的应用。使用这些API可以快速方便的实现很多如图像识别,分析等复杂功能,且不会增加应用安装包的体积。

本篇将首先介绍如何分析出静态图片中的矩形区域。矩形区域的是被非常重要,其通常用来对要分析的图片进行预处理,例如通过矩形分析截取其中的二维码,条形码部分后再进行精准的识别。

1 - 矩形分析示例

与视觉相关的大部分AI能力都封装在Vision框架中,本文要介绍的是通过发起矩形分析请求来分析图片,得到分析结果后将分析出来的矩形区域绘制回原图像上。

首先定义一些属性:

// 要分析的图片资源
let image = UIImage(named: "image2")!
lazy var imageView = UIImageView(image: image)

// 绘制的矩形区域
var boxViews: [UIView] = []

// 图像分析请求句柄
lazy var imageRequestHandler = VNImageRequestHandler(cgImage: image.cgImage!,
                                                orientation: .up,
                                                options: [:])

// 图像分析请求实例
private lazy var rectangleDetectionRequest: VNDetectRectanglesRequest = {
    let rectDetectRequest = VNDetectRectanglesRequest { request, error in
        DispatchQueue.main.async {
            self.drawTask(request: request as! VNDetectRectanglesRequest)
        }
    }
    // 自定义一些配置项
    // 设置要分析的最大结果个数(矩形个数)
    rectDetectRequest.maximumObservations = 0
    // 设置最低接受的可信值
    rectDetectRequest.minimumConfidence = 0
    // 设置最小接受的纵横比
    rectDetectRequest.minimumAspectRatio = 0.1
    return rectDetectRequest
}()

其中VNDetectRectanglesRequest即是核心的图片分析请求类,VNImageRequestHandler是请求句柄,用来发起请求。后面我们会详细介绍。在开始请求分析之前,我们还需要定义个方法,用来进行矩形区域绘制:

private func drawTask(request: VNDetectRectanglesRequest) {
    // 将之前绘制的删除
    boxViews.forEach { v in
        v.removeFromSuperview()
    }
    // 遍历分析结果
    for result in request.results ?? [] {
        var box = result.boundingBox
        // 坐标系转换
        box.origin.y = 1 - box.origin.y - box.size.height
        let v = UIView()
        v.backgroundColor = .clear
        v.layer.borderColor = UIColor.black.cgColor
        v.layer.borderWidth = 1
        imageView.addSubview(v)
        let size = imageView.frame.size
        v.frame = CGRect(x: box.origin.x * size.width, y: box.origin.y * size.height, width: box.size.width * size.width, height: box.size.height * size.height)
    }
}

需要注意,Vision框架中的坐标系与CoreGraphics框架中的坐标系是一致的,其以左下角点为(0, 0)点,在UIKit框架中则是以左上角点为(0,0)点,记得进行坐标系的转换。

最后,使用下面的代码来发起请求,静态图像的分析将会是一个耗时的过程,因此建议在非主线程中进行:

DispatchQueue.global(qos: .userInitiated).async {
    do {
        // 发起分析请求
        try self.imageRequestHandler.perform([self.rectangleDetectionRequest])
    } catch let error as NSError {
        print("Failed to perform image request: \(error)")
        return
    }
}

分析的结果会在定义VNDetectRectanglesRequest时传入的回调中返回。

你可以用几张图片来实验下检测效果,如下图:

上面图片中的黑色边框就是我们检测出的结果绘制的。

2 - 关于VNDetectRectanglesRequest类

VNDetectRectanglesRequest类用来对核心的分析请求进行定义,并且设置结果回调。VNDetectRectanglesRequest类是专门创建矩形区域识别的请求类,继承自VNImageBasedRequest,VNImageBasedRequest类是静态图像分析请求的基类,继承自VNRequest类。

我们先来看VNRequest类:

@available(iOS 11.0, *)
open class VNRequest : NSObject, NSCopying {
    // 构造方法,无处理回调
    public convenience init()

    // 构造方法其中回调参数定义如下
    // (VNRequest, Error?) -> Void
    // VNRequest为当前实例本身 error是异常(如果有)
    public init(completionHandler: VNRequestCompletionHandler? = nil)

    // 是否开启后台线程模式,此模式会占用更少的内存,CPU,GPU资源,给用户更好的渲染体验,但是会以耗时为代价
    open var preferBackgroundProcessing: Bool

    // 是否允许使用GPU进行加速
    open var usesCPUOnly: Bool

    // 分析结果列表,VNObservation是结果基类,不同的子类实现不同的功能
    open var results: [VNObservation]? { get }
    
    // 处理回调,此回调中会传入当前Request对象,通过内部的results拿到结果
    open var completionHandler: VNRequestCompletionHandler? { get }
    
    // 进行分析的特定算法版本
    open var revision: Int
    // 所支持的算法版本集合
    open class var supportedRevisions: IndexSet { get }
    // 默认的版本
    open class var defaultRevision: Int { get }
    // 当前使用的算法版本
    open class var currentRevision: Int { get }
    // 取消分析请求
    open func cancel()
}

在VNRequest类中封装了一组VNObservation对象,当成功的完成了图像分析任务后,结果会被封装成VNObservation对象,不同的分析任务对应的结果对象也不同,VNObservation是这些结果的基类,其中封装了基础的信息,如下:

@available(iOS 11.0, *)
open class VNObservation : NSObject, NSCopying, NSSecureCoding, VNRequestRevisionProviding {
    // 唯一标识id
    open var uuid: UUID { get }

    // 此结果的可信度,取值0到1之间
    open var confidence: VNConfidence { get }

    // 此结果的有效时间
    @available(iOS 14.0, *)
    open var timeRange: CMTimeRange { get }
}

VNImageBasedReques类是VNRequest的一个子类,其是静态图片分析请求类的基类,其中只封装了一个属性:

@available(iOS 11.0, *)
open class VNImageBasedRequest : VNRequest {
    // 矩形被标准化处理后的尺寸,默认为{{ 0, 0 }, { 1, 1 }}
    open var regionOfInterest: CGRect
}

regionOfInterest属性非常有用,其默认会把我们要处理的图像标准化为单位矩形,返回的结果中的坐标是以此单位矩形为标准的。

最后,我们再来看下VNDetectRectanglesRequest类,这个类即使我们进行矩形区域识别的请求配置类,如下:

@available(iOS 11.0, *)
open class VNDetectRectanglesRequest : VNImageBasedRequest {
    // 设置检测接受的矩形最小的纵横比 VNAspectRatio是Float类型的别名,取值0-1之间
    open var minimumAspectRatio: VNAspectRatio
    
    // 设置检测所接受的最大的纵横比,取值0-1之间
    open var maximumAspectRatio: VNAspectRatio

    // 设置矩形角度可以偏离90度的最大角度,取值0-45之间
    open var quadratureTolerance: VNDegrees
    
    // 设置允许检测到的最小的矩形尺寸,设置为相对原图像比例值0-1之间
    open var minimumSize: Float
    
    // 设置能够接受的最小可信度,0到1之间,小于此可信度的检测结果不会被返回
    open var minimumConfidence: VNConfidence

    // 设置允许检测出的最多结果数,默认为1,设置为0表示不限制,但是Vision框架目前最多支持16
    open var maximumObservations: Int
    
    // 结果数组
    open var results: [VNRectangleObservation]? { get }
}

需要注意,设置最大最小纵横比时,会总是以长的一边作为纵,短的一边作为横。

3 - 关于VNRectangleObservation类

VNRectangleObservatio是矩形区域分析请求的结果类,继承自VNDetectedObjectObservation类,VNDetectedObjectObservation类是VNObservation的子类,其通常与对象的识别有关,其封装了与识别相关的属性,如下:

@available(iOS 11.0, *)
open class VNDetectedObjectObservation : VNObservation {
    // 检测出的区域,注意原点在左下角
    open var boundingBox: CGRect { get }
    // 缓冲区的图像数据
    open var globalSegmentationMask: VNPixelBufferObservation? { get }
}

VNRectangleObservation类则封装了与矩形相关的属性数据:

@available(iOS 11.0, *)
open class VNRectangleObservation : VNDetectedObjectObservation {
    // 左上角位置
    open var topLeft: CGPoint { get }
    // 右上角位置
    open var topRight: CGPoint { get }
    // 左下角位置
    open var bottomLeft: CGPoint { get }
    // 右下角位置
    open var bottomRight: CGPoint { get }
}

理解了请求配置类与分析结果类的用法,剩下的就是请求句柄了。

4 - 关于VNImageRequestHandler类

VNImageRequestHandler类是请求句柄类,更通俗的说,其为分析请求提供了图像数据源,并触发请求。其支持的构造方法如下:

@available(iOS 11.0, *)
open class VNImageRequestHandler : NSObject {
    // 构造方法
    public init(cvPixelBuffer pixelBuffer: CVPixelBuffer, options: [VNImageOption : Any] = [:])
    public init(cvPixelBuffer pixelBuffer: CVPixelBuffer, orientation: CGImagePropertyOrientation, options: [VNImageOption : Any] = [:])
    public init(cgImage image: CGImage, options: [VNImageOption : Any] = [:])
    public init(cgImage image: CGImage, orientation: CGImagePropertyOrientation, options: [VNImageOption : Any] = [:])
    public init(ciImage image: CIImage, options: [VNImageOption : Any] = [:])
    public init(ciImage image: CIImage, orientation: CGImagePropertyOrientation, options: [VNImageOption : Any] = [:])
    public init(url imageURL: URL, options: [VNImageOption : Any] = [:])
    public init(url imageURL: URL, orientation: CGImagePropertyOrientation, options: [VNImageOption : Any] = [:])
    public init(data imageData: Data, options: [VNImageOption : Any] = [:])
    public init(data imageData: Data, orientation: CGImagePropertyOrientation, options: [VNImageOption : Any] = [:])
    public init(cmSampleBuffer sampleBuffer: CMSampleBuffer, options: [VNImageOption : Any] = [:])
    public init(cmSampleBuffer sampleBuffer: CMSampleBuffer, orientation: CGImagePropertyOrientation, options: [VNImageOption : Any] = [:])
}

VNImageRequestHandler类的构造方法很多,但归根结底是要提供三部分内容:

  1. 图片数据源。
  2. 图片的方向。
  3. 额外参数。

其中,图片的数据源可以从二进制数据加载,可以从网络加载,可以从CoreImage或CoreGraphics框架的图片对象加载等等,这里不多赘述。

图片的方向需要在构造句柄实例对象时进行提供,枚举如下:

@frozen public enum CGImagePropertyOrientation : UInt32, @unchecked Sendable {

    
    case up = 1 // 正向 

    case upMirrored = 2 // 水平镜像

    case down = 3 // 180度旋转

    case downMirrored = 4 // 竖直镜像

    case leftMirrored = 5 // 顺时针旋转90度后镜像

    case right = 6 // 顺时针旋转90度

    case rightMirrored = 7 // 逆时针旋转90度后镜像

    case left = 8 // 逆时针旋转90度
}

额外参数可以配置为一个字典对象,提供更多图片数据,支持配置的字段如下:

properties:此键可配置为一个属性字典,参考CGImageSourceCopyPropertiesAtIndex。

cameraIntrinsics:相机内部数据配置。

ciContex:CIContext配置。

最后,调用VNImageRequestHandler类的如下方法即可开始静态图像处理:

open func perform(_ requests: [VNRequest]) throws

同一个图像句柄可以同时发起多种图像处理请求。

注:本文所介绍的示例代码可在如下仓库获取:

https://github.com/ZYHshao/MachineLearnDemo

专注技术,懂的热爱,愿意分享,做个朋友
目录
相关文章
|
2月前
|
开发工具 Android开发 Swift
安卓与iOS开发环境对比分析
在移动应用开发的广阔舞台上,安卓和iOS这两大操作系统无疑是主角。它们各自拥有独特的特点和优势,为开发者提供了不同的开发环境和工具。本文将深入浅出地探讨安卓和iOS开发环境的主要差异,包括开发工具、编程语言、用户界面设计、性能优化以及市场覆盖等方面,旨在帮助初学者更好地理解两大平台的开发特点,并为他们选择合适的开发路径提供参考。通过比较分析,我们将揭示不同环境下的开发实践,以及如何根据项目需求和目标受众来选择最合适的开发平台。
43 2
|
2月前
|
安全 Android开发 数据安全/隐私保护
探索安卓与iOS的安全性差异:技术深度分析与实践建议
本文旨在深入探讨并比较Android和iOS两大移动操作系统在安全性方面的不同之处。通过详细的技术分析,揭示两者在架构设计、权限管理、应用生态及更新机制等方面的安全特性。同时,针对这些差异提出针对性的实践建议,旨在为开发者和用户提供增强移动设备安全性的参考。
104 3
|
18天前
|
开发工具 Android开发 Swift
安卓与iOS开发环境的差异性分析
【10月更文挑战第8天】 本文旨在探讨Android和iOS两大移动操作系统在开发环境上的不同,包括开发语言、工具、平台特性等方面。通过对这些差异性的分析,帮助开发者更好地理解两大平台,以便在项目开发中做出更合适的技术选择。
|
2月前
|
安全 Linux Android开发
探索安卓与iOS的安全性差异:技术深度分析
本文深入探讨了安卓(Android)和iOS两个主流操作系统平台在安全性方面的不同之处。通过比较它们在架构设计、系统更新机制、应用程序生态和隐私保护策略等方面的差异,揭示了每个平台独特的安全优势及潜在风险。此外,文章还讨论了用户在使用这些设备时可以采取的一些最佳实践,以增强个人数据的安全。
|
2月前
|
IDE 开发工具 Android开发
安卓与iOS开发环境对比分析
本文将探讨安卓和iOS这两大移动操作系统在开发环境上的差异,从工具、语言、框架到生态系统等多个角度进行比较。我们将深入了解各自的优势和劣势,并尝试为开发者提供一些实用的建议,以帮助他们根据自己的需求选择最适合的开发平台。
39 1
|
22天前
|
Java Android开发 Swift
安卓与iOS开发对比:平台选择对项目成功的影响
【10月更文挑战第4天】在移动应用开发的世界中,选择合适的平台是至关重要的。本文将深入探讨安卓和iOS两大主流平台的开发环境、用户基础、市场份额和开发成本等方面的差异,并分析这些差异如何影响项目的最终成果。通过比较这两个平台的优势与挑战,开发者可以更好地决定哪个平台更适合他们的项目需求。
84 1
|
29天前
|
设计模式 安全 Swift
探索iOS开发:打造你的第一个天气应用
【9月更文挑战第36天】在这篇文章中,我们将一起踏上iOS开发的旅程,从零开始构建一个简单的天气应用。文章将通过通俗易懂的语言,引导你理解iOS开发的基本概念,掌握Swift语言的核心语法,并逐步实现一个具有实际功能的天气应用。我们将遵循“学中做,做中学”的原则,让理论知识和实践操作紧密结合,确保学习过程既高效又有趣。无论你是编程新手还是希望拓展技能的开发者,这篇文章都将为你打开一扇通往iOS开发世界的大门。
|
30天前
|
搜索推荐 IDE API
打造个性化天气应用:iOS开发之旅
【9月更文挑战第35天】在这篇文章中,我们将一起踏上iOS开发的旅程,通过创建一个个性化的天气应用来探索Swift编程语言的魅力和iOS平台的强大功能。无论你是编程新手还是希望扩展你的技能集,这个项目都将为你提供实战经验,帮助你理解从构思到实现一个应用的全过程。让我们开始吧,构建你自己的天气应用,探索更多可能!
52 1
|
2月前
|
IDE Android开发 iOS开发
探索Android与iOS开发的差异:平台选择对项目成功的影响
【9月更文挑战第27天】在移动应用开发的世界中,Android和iOS是两个主要的操作系统平台。每个系统都有其独特的开发环境、工具和用户群体。本文将深入探讨这两个平台的关键差异点,并分析这些差异如何影响应用的性能、用户体验和最终的市场表现。通过对比分析,我们将揭示选择正确的开发平台对于确保项目成功的重要作用。
|
2月前
|
开发框架 数据可视化 Java
iOS开发-SwiftUI简介
iOS开发-SwiftUI简介