Java 8 中 HashMap 的性能提升

简介:

HashMap是一个高效通用的数据结构,它在每一个Java程序中都随处可见。先来介绍些基础知识。你可能也知 道,HashMap使用key的hashCode()和equals()方法来将值划分到不同的桶里。桶的数量通常要比map中的记录的数量要稍大,这样 每个桶包括的值会比较少(最好是一个)。当通过key进行查找时,我们可以在常数时间内迅速定位到某个桶(使用hashCode()对桶的数量进行取模) 以及要找的对象。

这些东西你应该都已经知道了。你可能还知道哈希碰撞会对hashMap的性能带来灾难性的影响。如果多个hashCode()的值落到同一个桶内的 时候,这些值是存储到一个链表中的。最坏的情况下,所有的key都映射到同一个桶中,这样hashmap就退化成了一个链表——查找时间从O(1)到 O(n)。我们先来测试下正常情况下hashmap在Java 7和Java 8中的表现。为了能完成控制hashCode()方法的行为,我们定义了如下的一个Key类:

class Key implements Comparable<Key> {
private final int value;
Key(int value) {
this.value = value;
}
@Override
public int compareTo(Key o) {
return Integer.compare(this.value, o.value);
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass())
return false;
Key key = (Key) o;
return value == key.value;
}
@Override
public int hashCode() {
return value;
}
}

Key类的实现中规中矩:它重写了equals()方法并且提供了一个还算过得去的hashCode()方法。为了避免过度的GC,我将不可变的Key对象缓存了起来,而不是每次都重新开始创建一遍:

class Key implements Comparable<Key> {
public class Keys {
public static final int MAX_KEY = 10_000_000;
private static final Key[] KEYS_CACHE = new Key[MAX_KEY];
static {
for (int i = 0; i < MAX_KEY; ++i) {
KEYS_CACHE[i] = new Key(i);
}
}
public static Key of(int value) {
return KEYS_CACHE[value];
}
}

现在我们可以开始进行测试了。我们的基准测试使用连续的Key值来创建了不同的大小的HashMap(10的乘方,从1到1百万)。在测试中我们还会使用key来进行查找,并测量不同大小的HashMap所花费的时间:

import com.google.caliper.Param;
import com.google.caliper.Runner;
import com.google.caliper.SimpleBenchmark;
public class MapBenchmark extends SimpleBenchmark {
private HashMap<Key, Integer> map;
@Param
private int mapSize;
@Override
protected void setUp() throws Exception {
map = new HashMap<>(mapSize);
for (int i = 0; i < mapSize; ++i) {
map.put(Keys.of(i), i);
}
}
public void timeMapGet(int reps) {
for (int i = 0; i < reps; i++) {
map.get(Keys.of(i % mapSize));
}
}
}

image

有意思的是这个简单的HashMap.get()里面,Java 8比Java 7要快20%。整体的性能也相当不错:尽管HashMap里有一百万条记录,单个查询也只花了不到10纳秒,也就是大概我机器上的大概20个CPU周期。 相当令人震撼!不过这并不是我们想要测量的目标。

假设有一个很差劲的key,他总是返回同一个值。这是最糟糕的场景了,这种情况完全就不应该使用HashMap:

class Key implements Comparable<Key> {
//...
@Override
public int hashCode() {
return 0;
}
}

image

Java 7的结果是预料中的。随着HashMap的大小的增长,get()方法的开销也越来越大。由于所有的记录都在同一个桶里的超长链表内,平均查询一条记录就需要遍历一半的列表。因此从图上可以看到,它的时间复杂度是O(n)。

不过Java 8的表现要好许多!它是一个log的曲线,因此它的性能要好上好几个数量级。尽管有严重的哈希碰撞,已是最坏的情况了,但这个同样的基准测试在JDK8中的时间复杂度是O(logn)。单独来看JDK 8的曲线的话会更清楚,这是一个对数线性分布:

image

为什么会有这么大的性能提升,尽管这里用的是大O符号(大O描述的是渐近上界)?其实这个优化在JEP-180中已经提到了。如果某个桶中的记录过 大的话(当前是TREEIFY_THRESHOLD = 8),HashMap会动态的使用一个专门的treemap实现来替换掉它。这样做的结果会更好,是O(logn),而不是糟糕的O(n)。它是如何工作 的?前面产生冲突的那些KEY对应的记录只是简单的追加到一个链表后面,这些记录只能通过遍历来进行查找。但是超过这个阈值后HashMap开始将列表升 级成一个二叉树,使用哈希值作为树的分支变量,如果两个哈希值不等,但指向同一个桶的话,较大的那个会插入到右子树里。如果哈希值相等,HashMap希 望key值最好是实现了Comparable接口的,这样它可以按照顺序来进行插入。这对HashMap的key来说并不是必须的,不过如果实现了当然最 好。如果没有实现这个接口,在出现严重的哈希碰撞的时候,你就并别指望能获得性能提升了。

这个性能提升有什么用处?比方说恶意的程序,如果它知道我们用的是哈希算法,它可能会发送大量的请求,导致产生严重的哈希碰撞。然后不停的访问这些 key就能显著的影响服务器的性能,这样就形成了一次拒绝服务攻击(DoS)。JDK 8中从O(n)到O(logn)的飞跃,可以有效地防止类似的攻击,同时也让HashMap性能的可预测性稍微增强了一些。我希望这个提升能最终说服你的 老大同意升级到JDK 8来。

测试使用的环境是:Intel Core i7-3635QM @ 2.4 GHz,8GB内存,SSD硬盘,使用默认的JVM参数,运行在64位的Windows 8.1系统 上。

文章转载自 开源中国社区 [http://www.oschina.net]

目录
相关文章
|
4月前
|
Java 测试技术 API
Java Stream API:被低估的性能陷阱与优化技巧
Java Stream API:被低估的性能陷阱与优化技巧
413 114
|
6月前
|
机器学习/深度学习 Java 编译器
解锁硬件潜能:Java向量化计算,性能飙升W倍!
编译优化中的机器相关优化主要包括指令选择、寄存器分配、窥孔优化等,发生在编译后端,需考虑目标平台的指令集、寄存器、SIMD支持等硬件特性。向量化计算利用SIMD技术,实现数据级并行,大幅提升性能,尤其适用于图像处理、机器学习等领域。Java通过自动向量化和显式向量API(JDK 22标准)支持该技术。
281 4
|
6月前
|
Cloud Native 前端开发 Java
WebAssembly 与 Java 结合的跨语言协作方案及性能提升策略研究
本文深入探讨了WebAssembly与Java的结合方式,介绍了编译Java为Wasm模块、在Java中运行Wasm、云原生集成等技术方案,并通过金融分析系统的应用实例展示了其高性能、低延迟、跨平台等优势。结合TeaVM、JWebAssembly、GraalVM、Wasmer Java等工具,帮助开发者提升应用性能与开发效率,适用于Web前端、服务器端及边缘计算等场景。
237 0
|
9月前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
4月前
|
消息中间件 缓存 Java
Spring框架优化:提高Java应用的性能与适应性
以上方法均旨在综合考虑Java Spring 应该程序设计原则, 数据库交互, 编码实践和系统架构布局等多角度因素, 旨在达到高效稳定运转目标同时也易于未来扩展.
232 8
|
4月前
|
存储 缓存 Java
Java 12相比Java 11有哪些性能上的提升?
Java 12相比Java 11有哪些性能上的提升?
143 3
|
5月前
|
Java Spring
如何优化Java异步任务的性能?
本文介绍了Java中四种异步任务实现方式:基础Thread、线程池、CompletableFuture及虚拟线程。涵盖多场景代码示例,展示从简单异步到复杂流程编排的演进,适用于不同版本与业务需求,助你掌握高效并发编程实践。(239字)
303 6
|
5月前
|
缓存 Java 开发者
Java 开发者必看!ArrayList 和 LinkedList 的性能厮杀:选错一次,代码慢成蜗牛
本文深入解析了 Java 中 ArrayList 和 LinkedList 的性能差异,揭示了它们在不同操作下的表现。通过对比随机访问、插入、删除等操作的效率,指出 ArrayList 在多数场景下更高效,而 LinkedList 仅在特定情况下表现优异。文章强调选择合适容器对程序性能的重要性,并提供了实用的选择法则。
289 3
|
8月前
|
存储 Java 大数据
Java代码优化:for、foreach、stream使用法则与性能比较
总结起来,for、foreach和stream各自都有其适用性和优势,在面对不同的情况时,有意识的选择更合适的工具,能帮助我们更好的解决问题。记住,没有哪个方法在所有情况下都是最优的,关键在于理解它们各自的特性和适用场景。
742 23
|
8月前
|
存储 安全 Java
Java 集合面试题从数据结构到 HashMap 源码剖析详解及长尾考点梳理
本文深入解析Java集合框架,涵盖基础概念、常见集合类型及HashMap的底层数据结构与源码实现。从Collection、Map到Iterator接口,逐一剖析其特性与应用场景。重点解读HashMap在JDK1.7与1.8中的数据结构演变,包括数组+链表+红黑树优化,以及put方法和扩容机制的实现细节。结合订单管理与用户权限管理等实际案例,展示集合框架的应用价值,助你全面掌握相关知识,轻松应对面试与开发需求。
394 3