开局一张图,内容全靠编
1、HashMap、HashTable 实际上是数组和链表的结合
2、HashSet内部是基于HashMap实现的,也就是hashMap的key形成了HashSet,value为
private static final Object PRESENT = new Object();
HashMap元素key相同的话,不会另外添加到HashMap中,而是更新相同key的value,这就保证了
Hashset不能存储相同的数据
public boolean add(E e) { return map.put(e, PRESENT)==null; }
3、内存扩容时采取的方式也不同,Hashtable(左移一位加1)采用的是2old+1,而HashMap是2old,HashSet是2*old
HashMap
put方法:
public V put(K key, V value) { return putVal(hash(key), key, value, false, true); }
当h小于65536时都为0
static final int hash(Object key) { int h; return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); }
final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node<K,V>[] tab; Node<K,V> p; int n, i; if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newNode(hash, key, value, null); ++modCount; if (++size > threshold) resize(); afterNodeInsertion(evict); return null; }
final Node<K,V>[] resize() { Node<K,V>[] oldTab = table; int oldCap = (oldTab == null) ? 0 : oldTab.length; int oldThr = threshold; int newCap, newThr = 0; if (oldCap > 0) { if (oldCap >= MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return oldTab; } else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) newThr = oldThr << 1; // double threshold } else if (oldThr > 0) // initial capacity was placed in threshold newCap = oldThr; else { // zero initial threshold signifies using defaults newCap = DEFAULT_INITIAL_CAPACITY; newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); }
默认扩容机制:Hashmap默认容量为16(1左移四位),其中加载因子loadFactor为0.75,会计算出一个threshold为12(0.7516=12),当添加12个元素后重新调用resize方法创建新的容量为32(162,原来容量左移一位),threshold变成24(0.75*32=24),每次新增元素后要判断size和threshold的大小,然后重新计算每个元素在新数组中的位置,而这是一个非常消耗性能的操作,所以如果我们已经预知HashMap中元素的个数,那么预设元素的个数能够有效的提高HashMap的性能
思路:
1、首先通过key计算hash值 然后得到在table[]中的位置
2、然后根据put顺序,新增的放在链头,最先的在链尾,从而形成hashmap结构为横向数组table[],然后纵向为相同hash值的Entry<K,V>链表的形式
get方法:
public V get(Object key) { Node<K,V> e; return (e = getNode(hash(key), key)) == null ? null : e.value; }
final Node<K,V> getNode(int hash, Object key) { Node<K,V>[] tab; Node<K,V> first, e; int n; K k; if ((tab = table) != null && (n = tab.length) > 0 && (first = tab[(n - 1) & hash]) != null) { if (first.hash == hash && // always check first node ((k = first.key) == key || (key != null && key.equals(k)))) return first; if ((e = first.next) != null) { if (first instanceof TreeNode) return ((TreeNode<K,V>)first).getTreeNode(hash, key); do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) return e; } while ((e = e.next) != null); } } return null; }
思路:
1、首先清楚结构是横向数组+纵向链表,首先利用key算出hash得到在数组中的索引值
2、得到索引值,然后e = e.next遍历链表,key相等则返回value
remove方法:
public V remove(Object key) { Node<K,V> e; return (e = removeNode(hash(key), key, null, false, true)) == null ? null : e.value; }
final Node<K,V> removeNode(int hash, Object key, Object value, boolean matchValue, boolean movable) { Node<K,V>[] tab; Node<K,V> p; int n, index; if ((tab = table) != null && (n = tab.length) > 0 && (p = tab[index = (n - 1) & hash]) != null) { Node<K,V> node = null, e; K k; V v; if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) node = p; else if (node == p) tab[index] = node.next; else p.next = node.next; ++modCount; --size; afterNodeRemoval(node); return node; } } return null; }
思路:
先找到然后和链表remove方法差不多,修改prev、next
注意:HashMap、HashTable、HashSet都实现了java.io.Serializable这个序列化的接口,并且里面存储数据的数组都用transient关键字,然后利用writeObject和readObject两个方法来实现序列化操作时写入、读出