Android 7.1 触摸事件代码跟踪

简介: Android 7.1 触摸事件代码跟踪

Android 7.1 触摸事件代码跟踪


平台


rk3288 + Android 7.1


Framework-service


|-- frameworks/base/services/core/java/com/android/server/input/InputManagerService.java


public InputManagerService(Context context) {
        this.mContext = context;
        this.mHandler = new InputManagerHandler(DisplayThread.get().getLooper());
        mUseDevInputEventForAudioJack =
                context.getResources().getBoolean(R.bool.config_useDevInputEventForAudioJack);
        Slog.i(TAG, "Initializing input manager, mUseDevInputEventForAudioJack="
                + mUseDevInputEventForAudioJack);
        mPtr = nativeInit(this, mContext, mHandler.getLooper().getQueue());
        String doubleTouchGestureEnablePath = context.getResources().getString(
                R.string.config_doubleTouchGestureEnableFile);
        mDoubleTouchGestureEnableFile = TextUtils.isEmpty(doubleTouchGestureEnablePath) ? null :
            new File(doubleTouchGestureEnablePath);
        LocalServices.addService(InputManagerInternal.class, new LocalService());
    }
    public void start() {
        Slog.i(TAG, "Starting input manager");
        nativeStart(mPtr);
        // Add ourself to the Watchdog monitors.
        Watchdog.getInstance().addMonitor(this);
        registerPointerSpeedSettingObserver();
        registerShowTouchesSettingObserver();
        registerAccessibilityLargePointerSettingObserver();
        mContext.registerReceiver(new BroadcastReceiver() {
            @Override
            public void onReceive(Context context, Intent intent) {
                updatePointerSpeedFromSettings();
                updateShowTouchesFromSettings();
                updateAccessibilityLargePointerFromSettings();
            }
        }, new IntentFilter(Intent.ACTION_USER_SWITCHED), null, mHandler);
        updatePointerSpeedFromSettings();
        updateShowTouchesFromSettings();
        updateAccessibilityLargePointerFromSettings();
    }


Framework-jni


|-- frameworks/base/services/core/jni/Android.mk


LOCAL_SHARED_LIBRARIES += \
    libandroid_runtime \
    libandroidfw \
    libbinder \
    libcutils \
    liblog \
    libhardware \
    libhardware_legacy \
    libkeystore_binder \
    libnativehelper \
    libutils \
    libui \
    libinput \
    libinputflinger \
    libinputservice \
    libsensorservice \
    libskia \
    libgui \
    libusbhost \
    libsuspend \
    libEGL \
    libGLESv2 \
    libnetutils \
    libdrm \
    libsync \


|-- frameworks/base/services/core/jni/com_android_server_input_InputManagerService.cpp


#include <inputflinger/InputManager.h>
static jlong nativeInit(JNIEnv* env, jclass /* clazz */,
        jobject serviceObj, jobject contextObj, jobject messageQueueObj) {
    sp<MessageQueue> messageQueue = android_os_MessageQueue_getMessageQueue(env, messageQueueObj);
    if (messageQueue == NULL) {
        jniThrowRuntimeException(env, "MessageQueue is not initialized.");
        return 0;
    }
    NativeInputManager* im = new NativeInputManager(contextObj, serviceObj,
            messageQueue->getLooper());
    im->incStrong(0);
    return reinterpret_cast<jlong>(im);
}
static void nativeStart(JNIEnv* env, jclass /* clazz */, jlong ptr) {
    NativeInputManager* im = reinterpret_cast<NativeInputManager*>(ptr);
    status_t result = im->getInputManager()->start();
    if (result) {
        jniThrowRuntimeException(env, "Input manager could not be started.");
    }
}
NativeInputManager::NativeInputManager(jobject contextObj,
        jobject serviceObj, const sp<Looper>& looper) :
        mLooper(looper), mInteractive(true) {
    JNIEnv* env = jniEnv();
    mContextObj = env->NewGlobalRef(contextObj);
    mServiceObj = env->NewGlobalRef(serviceObj);
    {
        AutoMutex _l(mLock);
        mLocked.systemUiVisibility = ASYSTEM_UI_VISIBILITY_STATUS_BAR_VISIBLE;
        mLocked.pointerSpeed = 0;
        mLocked.pointerGesturesEnabled = true;
        mLocked.showTouches = false;
        mLocked.hardwareRotation = 0;
  char property[PROPERTY_VALUE_MAX];
        if (property_get("ro.sf.hwrotation", property, "0") > 0) {
            mLocked.hardwareRotation = atoi(property) / 90;
        }
    }
    mInteractive = true;
    sp<EventHub> eventHub = new EventHub();
    mInputManager = new InputManager(eventHub, this, this);
}


Framework-libinputflinger


|-- frameworks/native/services/inputflinger/InputManager.cpp


InputManager::InputManager(
        const sp<EventHubInterface>& eventHub,
        const sp<InputReaderPolicyInterface>& readerPolicy,
        const sp<InputDispatcherPolicyInterface>& dispatcherPolicy) {
    mDispatcher = new InputDispatcher(dispatcherPolicy);
    mReader = new InputReader(eventHub, readerPolicy, mDispatcher);
    initialize();
}
InputManager::InputManager(
        const sp<InputReaderInterface>& reader,
        const sp<InputDispatcherInterface>& dispatcher) :
        mReader(reader),
        mDispatcher(dispatcher) {
    initialize();
}
void InputManager::initialize() {
    mReaderThread = new InputReaderThread(mReader);
    mDispatcherThread = new InputDispatcherThread(mDispatcher);
}
status_t InputManager::start() {
    status_t result = mDispatcherThread->run("InputDispatcher", PRIORITY_URGENT_DISPLAY);
    if (result) {
        ALOGE("Could not start InputDispatcher thread due to error %d.", result);
        return result;
    }
    result = mReaderThread->run("InputReader", PRIORITY_URGENT_DISPLAY);
    if (result) {
        ALOGE("Could not start InputReader thread due to error %d.", result);
        mDispatcherThread->requestExit();
        return result;
    }
    return OK;
}
status_t InputManager::stop() {
    status_t result = mReaderThread->requestExitAndWait();
    if (result) {
        ALOGW("Could not stop InputReader thread due to error %d.", result);
    }
    result = mDispatcherThread->requestExitAndWait();
    if (result) {
        ALOGW("Could not stop InputDispatcher thread due to error %d.", result);
    }
    return OK;
}


|-- frameworks/native/services/inputflinger/InputReader.cpp


bool InputReaderThread::threadLoop() {
    mReader->loopOnce();
    return true;
}
void InputReader::loopOnce() {
    int32_t oldGeneration;
    int32_t timeoutMillis;
    bool inputDevicesChanged = false;
    Vector<InputDeviceInfo> inputDevices;
    { // acquire lock
        AutoMutex _l(mLock);
        oldGeneration = mGeneration;
        timeoutMillis = -1;
        uint32_t changes = mConfigurationChangesToRefresh;
        if (changes) {
            mConfigurationChangesToRefresh = 0;
            timeoutMillis = 0;
            refreshConfigurationLocked(changes);
        } else if (mNextTimeout != LLONG_MAX) {
            nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
            timeoutMillis = toMillisecondTimeoutDelay(now, mNextTimeout);
        }
    } // release lock
    size_t count = mEventHub->getEvents(timeoutMillis, mEventBuffer, EVENT_BUFFER_SIZE);
    { // acquire lock
        AutoMutex _l(mLock);
        mReaderIsAliveCondition.broadcast();
        if (count) {
            processEventsLocked(mEventBuffer, count);
        }
        if (mNextTimeout != LLONG_MAX) {
            nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
            if (now >= mNextTimeout) {
#if DEBUG_RAW_EVENTS
                ALOGD("Timeout expired, latency=%0.3fms", (now - mNextTimeout) * 0.000001f);
#endif
                mNextTimeout = LLONG_MAX;
                timeoutExpiredLocked(now);
            }
        }
        if (oldGeneration != mGeneration) {
            inputDevicesChanged = true;
            getInputDevicesLocked(inputDevices);
        }
    } // release lock
    // Send out a message that the describes the changed input devices.
    if (inputDevicesChanged) {
        mPolicy->notifyInputDevicesChanged(inputDevices);
    }
    // Flush queued events out to the listener.
    // This must happen outside of the lock because the listener could potentially call
    // back into the InputReader's methods, such as getScanCodeState, or become blocked
    // on another thread similarly waiting to acquire the InputReader lock thereby
    // resulting in a deadlock.  This situation is actually quite plausible because the
    // listener is actually the input dispatcher, which calls into the window manager,
    // which occasionally calls into the input reader.
    mQueuedListener->flush();
}
void InputReader::processEventsLocked(const RawEvent* rawEvents, size_t count) {
    for (const RawEvent* rawEvent = rawEvents; count;) {
        int32_t type = rawEvent->type;
        size_t batchSize = 1;
        if (type < EventHubInterface::FIRST_SYNTHETIC_EVENT) {
            int32_t deviceId = rawEvent->deviceId;
            while (batchSize < count) {
                if (rawEvent[batchSize].type >= EventHubInterface::FIRST_SYNTHETIC_EVENT
                        || rawEvent[batchSize].deviceId != deviceId) {
                    break;
                }
                batchSize += 1;
            }
#if DEBUG_RAW_EVENTS
            ALOGD("BatchSize: %d Count: %d", batchSize, count);
#endif
            processEventsForDeviceLocked(deviceId, rawEvent, batchSize);
        } else {
            switch (rawEvent->type) {
            case EventHubInterface::DEVICE_ADDED:
                addDeviceLocked(rawEvent->when, rawEvent->deviceId);
                break;
            case EventHubInterface::DEVICE_REMOVED:
                removeDeviceLocked(rawEvent->when, rawEvent->deviceId);
                break;
            case EventHubInterface::FINISHED_DEVICE_SCAN:
                handleConfigurationChangedLocked(rawEvent->when);
                break;
            default:
                ALOG_ASSERT(false); // can't happen
                break;
            }
        }
        count -= batchSize;
        rawEvent += batchSize;
    }
}
void InputReader::processEventsForDeviceLocked(int32_t deviceId,
        const RawEvent* rawEvents, size_t count) {
    ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
    if (deviceIndex < 0) {
        ALOGW("Discarding event for unknown deviceId %d.", deviceId);
        return;
    }
    InputDevice* device = mDevices.valueAt(deviceIndex);
    if (device->isIgnored()) {
        //ALOGD("Discarding event for ignored deviceId %d.", deviceId);
        return;
    }
    device->process(rawEvents, count);
}
void MultiTouchInputMapper::process(const RawEvent* rawEvent) {
  ALOGD("ALog MultiTouchInputMapper::process");
    TouchInputMapper::process(rawEvent);
    mMultiTouchMotionAccumulator.process(rawEvent);
}
void TouchInputMapper::process(const RawEvent* rawEvent) {
    mCursorButtonAccumulator.process(rawEvent);
    mCursorScrollAccumulator.process(rawEvent);
    mTouchButtonAccumulator.process(rawEvent);
    if (rawEvent->type == EV_SYN && rawEvent->code == SYN_REPORT) {
        sync(rawEvent->when);
    }
}
void TouchInputMapper::sync(nsecs_t when) {
    const RawState* last = mRawStatesPending.isEmpty() ?
            &mCurrentRawState : &mRawStatesPending.top();
    // Push a new state.
    mRawStatesPending.push();
    RawState* next = &mRawStatesPending.editTop();
    next->clear();
    next->when = when;
    // Sync button state.
    next->buttonState = mTouchButtonAccumulator.getButtonState()
            | mCursorButtonAccumulator.getButtonState();
    // Sync scroll
    next->rawVScroll = mCursorScrollAccumulator.getRelativeVWheel();
    next->rawHScroll = mCursorScrollAccumulator.getRelativeHWheel();
    mCursorScrollAccumulator.finishSync();
    // Sync touch
    syncTouch(when, next);
    // Assign pointer ids.
    if (!mHavePointerIds) {
        assignPointerIds(last, next);
    }
//#if DEBUG_RAW_EVENTS
    ALOGD("ALog syncTouch: pointerCount %d -> %d, touching ids 0x%08x -> 0x%08x, "
            "hovering ids 0x%08x -> 0x%08x",
            last->rawPointerData.pointerCount,
            next->rawPointerData.pointerCount,
            last->rawPointerData.touchingIdBits.value,
            next->rawPointerData.touchingIdBits.value,
            last->rawPointerData.hoveringIdBits.value,
            next->rawPointerData.hoveringIdBits.value);
//#endif
    processRawTouches(false /*timeout*/);
}
void TouchInputMapper::processRawTouches(bool timeout) {
    if (mDeviceMode == DEVICE_MODE_DISABLED) {
        // Drop all input if the device is disabled.
        mCurrentRawState.clear();
        mRawStatesPending.clear();
        return;
    }
    // Drain any pending touch states. The invariant here is that the mCurrentRawState is always
    // valid and must go through the full cook and dispatch cycle. This ensures that anything
    // touching the current state will only observe the events that have been dispatched to the
    // rest of the pipeline.
    const size_t N = mRawStatesPending.size();
    size_t count;
    for(count = 0; count < N; count++) {
        const RawState& next = mRawStatesPending[count];
        // A failure to assign the stylus id means that we're waiting on stylus data
        // and so should defer the rest of the pipeline.
        if (assignExternalStylusId(next, timeout)) {
            break;
        }
        // All ready to go.
        clearStylusDataPendingFlags();
        mCurrentRawState.copyFrom(next);
        if (mCurrentRawState.when < mLastRawState.when) {
            mCurrentRawState.when = mLastRawState.when;
        }
        cookAndDispatch(mCurrentRawState.when);
    }
    if (count != 0) {
        mRawStatesPending.removeItemsAt(0, count);
    }
    if (mExternalStylusDataPending) {
        if (timeout) {
            nsecs_t when = mExternalStylusFusionTimeout - STYLUS_DATA_LATENCY;
            clearStylusDataPendingFlags();
            mCurrentRawState.copyFrom(mLastRawState);
#if DEBUG_STYLUS_FUSION
            ALOGD("Timeout expired, synthesizing event with new stylus data");
#endif
            cookAndDispatch(when);
        } else if (mExternalStylusFusionTimeout == LLONG_MAX) {
            mExternalStylusFusionTimeout = mExternalStylusState.when + TOUCH_DATA_TIMEOUT;
            getContext()->requestTimeoutAtTime(mExternalStylusFusionTimeout);
        }
    }
}
void TouchInputMapper::cookAndDispatch(nsecs_t when) {
    // Always start with a clean state.
    mCurrentCookedState.clear();
    // Apply stylus buttons to current raw state.
    applyExternalStylusButtonState(when);
    // Handle policy on initial down or hover events.
    bool initialDown = mLastRawState.rawPointerData.pointerCount == 0
            && mCurrentRawState.rawPointerData.pointerCount != 0;
    uint32_t policyFlags = 0;
    bool buttonsPressed = mCurrentRawState.buttonState & ~mLastRawState.buttonState;
    if (initialDown || buttonsPressed) {
        // If this is a touch screen, hide the pointer on an initial down.
        if (mDeviceMode == DEVICE_MODE_DIRECT) {
            getContext()->fadePointer();
        }
        if (mParameters.wake) {
            policyFlags |= POLICY_FLAG_WAKE;
        }
    }
    // Consume raw off-screen touches before cooking pointer data.
    // If touches are consumed, subsequent code will not receive any pointer data.
    if (consumeRawTouches(when, policyFlags)) {
        mCurrentRawState.rawPointerData.clear();
    }
    // Cook pointer data.  This call populates the mCurrentCookedState.cookedPointerData structure
    // with cooked pointer data that has the same ids and indices as the raw data.
    // The following code can use either the raw or cooked data, as needed.
    cookPointerData();
    // Apply stylus pressure to current cooked state.
    applyExternalStylusTouchState(when);
    // Synthesize key down from raw buttons if needed.
    synthesizeButtonKeys(getContext(), AKEY_EVENT_ACTION_DOWN, when, getDeviceId(), mSource,
            policyFlags, mLastCookedState.buttonState, mCurrentCookedState.buttonState);
    // Dispatch the touches either directly or by translation through a pointer on screen.
    if (mDeviceMode == DEVICE_MODE_POINTER) {
        for (BitSet32 idBits(mCurrentRawState.rawPointerData.touchingIdBits);
                !idBits.isEmpty(); ) {
            uint32_t id = idBits.clearFirstMarkedBit();
            const RawPointerData::Pointer& pointer =
                    mCurrentRawState.rawPointerData.pointerForId(id);
            if (pointer.toolType == AMOTION_EVENT_TOOL_TYPE_STYLUS
                    || pointer.toolType == AMOTION_EVENT_TOOL_TYPE_ERASER) {
                mCurrentCookedState.stylusIdBits.markBit(id);
            } else if (pointer.toolType == AMOTION_EVENT_TOOL_TYPE_FINGER
                    || pointer.toolType == AMOTION_EVENT_TOOL_TYPE_UNKNOWN) {
                mCurrentCookedState.fingerIdBits.markBit(id);
            } else if (pointer.toolType == AMOTION_EVENT_TOOL_TYPE_MOUSE) {
                mCurrentCookedState.mouseIdBits.markBit(id);
            }
        }
        for (BitSet32 idBits(mCurrentRawState.rawPointerData.hoveringIdBits);
                !idBits.isEmpty(); ) {
            uint32_t id = idBits.clearFirstMarkedBit();
            const RawPointerData::Pointer& pointer =
                    mCurrentRawState.rawPointerData.pointerForId(id);
            if (pointer.toolType == AMOTION_EVENT_TOOL_TYPE_STYLUS
                    || pointer.toolType == AMOTION_EVENT_TOOL_TYPE_ERASER) {
                mCurrentCookedState.stylusIdBits.markBit(id);
            }
        }
        // Stylus takes precedence over all tools, then mouse, then finger.
        PointerUsage pointerUsage = mPointerUsage;
        if (!mCurrentCookedState.stylusIdBits.isEmpty()) {
            mCurrentCookedState.mouseIdBits.clear();
            mCurrentCookedState.fingerIdBits.clear();
            pointerUsage = POINTER_USAGE_STYLUS;
        } else if (!mCurrentCookedState.mouseIdBits.isEmpty()) {
            mCurrentCookedState.fingerIdBits.clear();
            pointerUsage = POINTER_USAGE_MOUSE;
        } else if (!mCurrentCookedState.fingerIdBits.isEmpty() ||
                isPointerDown(mCurrentRawState.buttonState)) {
            pointerUsage = POINTER_USAGE_GESTURES;
        }
        dispatchPointerUsage(when, policyFlags, pointerUsage);
    } else {
        if (mDeviceMode == DEVICE_MODE_DIRECT
                && mConfig.showTouches && mPointerController != NULL) {
            mPointerController->setPresentation(PointerControllerInterface::PRESENTATION_SPOT);
            mPointerController->fade(PointerControllerInterface::TRANSITION_GRADUAL);
            mPointerController->setButtonState(mCurrentRawState.buttonState);
            mPointerController->setSpots(mCurrentCookedState.cookedPointerData.pointerCoords,
                    mCurrentCookedState.cookedPointerData.idToIndex,
                    mCurrentCookedState.cookedPointerData.touchingIdBits);
        }
        if (!mCurrentMotionAborted) {
            dispatchButtonRelease(when, policyFlags);
            dispatchHoverExit(when, policyFlags);
            dispatchTouches(when, policyFlags);
            dispatchHoverEnterAndMove(when, policyFlags);
            dispatchButtonPress(when, policyFlags);
        }
        if (mCurrentCookedState.cookedPointerData.pointerCount == 0) {
            mCurrentMotionAborted = false;
        }
    }
    // Synthesize key up from raw buttons if needed.
    synthesizeButtonKeys(getContext(), AKEY_EVENT_ACTION_UP, when, getDeviceId(), mSource,
            policyFlags, mLastCookedState.buttonState, mCurrentCookedState.buttonState);
    // Clear some transient state.
    mCurrentRawState.rawVScroll = 0;
    mCurrentRawState.rawHScroll = 0;
    // Copy current touch to last touch in preparation for the next cycle.
    mLastRawState.copyFrom(mCurrentRawState);
    mLastCookedState.copyFrom(mCurrentCookedState);
}
void TouchInputMapper::dispatchTouches(nsecs_t when, uint32_t policyFlags) {
    BitSet32 currentIdBits = mCurrentCookedState.cookedPointerData.touchingIdBits;
    BitSet32 lastIdBits = mLastCookedState.cookedPointerData.touchingIdBits;
    int32_t metaState = getContext()->getGlobalMetaState();
    int32_t buttonState = mCurrentCookedState.buttonState;
    if (currentIdBits == lastIdBits) {
        if (!currentIdBits.isEmpty()) {
            // No pointer id changes so this is a move event.
            // The listener takes care of batching moves so we don't have to deal with that here.
            dispatchMotion(when, policyFlags, mSource,
                    AMOTION_EVENT_ACTION_MOVE, 0, 0, metaState, buttonState,
                    AMOTION_EVENT_EDGE_FLAG_NONE,
                    mCurrentCookedState.cookedPointerData.pointerProperties,
                    mCurrentCookedState.cookedPointerData.pointerCoords,
                    mCurrentCookedState.cookedPointerData.idToIndex,
                    currentIdBits, -1,
                    mOrientedXPrecision, mOrientedYPrecision, mDownTime);
        }
    } else {
        // There may be pointers going up and pointers going down and pointers moving
        // all at the same time.
        BitSet32 upIdBits(lastIdBits.value & ~currentIdBits.value);
        BitSet32 downIdBits(currentIdBits.value & ~lastIdBits.value);
        BitSet32 moveIdBits(lastIdBits.value & currentIdBits.value);
        BitSet32 dispatchedIdBits(lastIdBits.value);
        // Update last coordinates of pointers that have moved so that we observe the new
        // pointer positions at the same time as other pointers that have just gone up.
        bool moveNeeded = updateMovedPointers(
                mCurrentCookedState.cookedPointerData.pointerProperties,
                mCurrentCookedState.cookedPointerData.pointerCoords,
                mCurrentCookedState.cookedPointerData.idToIndex,
                mLastCookedState.cookedPointerData.pointerProperties,
                mLastCookedState.cookedPointerData.pointerCoords,
                mLastCookedState.cookedPointerData.idToIndex,
                moveIdBits);
        if (buttonState != mLastCookedState.buttonState) {
            moveNeeded = true;
        }
        // Dispatch pointer up events.
        while (!upIdBits.isEmpty()) {
            uint32_t upId = upIdBits.clearFirstMarkedBit();
            dispatchMotion(when, policyFlags, mSource,
                    AMOTION_EVENT_ACTION_POINTER_UP, 0, 0, metaState, buttonState, 0,
                    mLastCookedState.cookedPointerData.pointerProperties,
                    mLastCookedState.cookedPointerData.pointerCoords,
                    mLastCookedState.cookedPointerData.idToIndex,
                    dispatchedIdBits, upId, mOrientedXPrecision, mOrientedYPrecision, mDownTime);
            dispatchedIdBits.clearBit(upId);
        }
        // Dispatch move events if any of the remaining pointers moved from their old locations.
        // Although applications receive new locations as part of individual pointer up
        // events, they do not generally handle them except when presented in a move event.
        if (moveNeeded && !moveIdBits.isEmpty()) {
            ALOG_ASSERT(moveIdBits.value == dispatchedIdBits.value);
            dispatchMotion(when, policyFlags, mSource,
                    AMOTION_EVENT_ACTION_MOVE, 0, 0, metaState, buttonState, 0,
                    mCurrentCookedState.cookedPointerData.pointerProperties,
                    mCurrentCookedState.cookedPointerData.pointerCoords,
                    mCurrentCookedState.cookedPointerData.idToIndex,
                    dispatchedIdBits, -1, mOrientedXPrecision, mOrientedYPrecision, mDownTime);
        }
        // Dispatch pointer down events using the new pointer locations.
        while (!downIdBits.isEmpty()) {
            uint32_t downId = downIdBits.clearFirstMarkedBit();
            dispatchedIdBits.markBit(downId);
            if (dispatchedIdBits.count() == 1) {
                // First pointer is going down.  Set down time.
                mDownTime = when;
            }
            dispatchMotion(when, policyFlags, mSource,
                    AMOTION_EVENT_ACTION_POINTER_DOWN, 0, 0, metaState, buttonState, 0,
                    mCurrentCookedState.cookedPointerData.pointerProperties,
                    mCurrentCookedState.cookedPointerData.pointerCoords,
                    mCurrentCookedState.cookedPointerData.idToIndex,
                    dispatchedIdBits, downId, mOrientedXPrecision, mOrientedYPrecision, mDownTime);
        }
    }
}
void TouchInputMapper::dispatchMotion(nsecs_t when, uint32_t policyFlags, uint32_t source,
        int32_t action, int32_t actionButton, int32_t flags,
        int32_t metaState, int32_t buttonState, int32_t edgeFlags,
        const PointerProperties* properties, const PointerCoords* coords,
        const uint32_t* idToIndex, BitSet32 idBits, int32_t changedId,
        float xPrecision, float yPrecision, nsecs_t downTime) {
  //AnsonCode
  ALOGD("ALog dispatchMotion source(%d), width(%d), height(%d), orientation(%d)", source, mSurfaceWidth, mSurfaceHeight, mSurfaceOrientation);
  ALOGD("ALog coords(%f, %f), xP(%f), yP(%f)", coords->getX(), coords->getY(), xPrecision, yPrecision);
    PointerCoords pointerCoords[MAX_POINTERS];
    PointerProperties pointerProperties[MAX_POINTERS];
    uint32_t pointerCount = 0;
    while (!idBits.isEmpty()) {
        uint32_t id = idBits.clearFirstMarkedBit();
        uint32_t index = idToIndex[id];
        pointerProperties[pointerCount].copyFrom(properties[index]);
        pointerCoords[pointerCount].copyFrom(coords[index]);
        if (changedId >= 0 && id == uint32_t(changedId)) {
            action |= pointerCount << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT;
        }
        pointerCount += 1;
    }
    ALOG_ASSERT(pointerCount != 0);
    if (changedId >= 0 && pointerCount == 1) {
        // Replace initial down and final up action.
        // We can compare the action without masking off the changed pointer index
        // because we know the index is 0.
        if (action == AMOTION_EVENT_ACTION_POINTER_DOWN) {
            action = AMOTION_EVENT_ACTION_DOWN;
        } else if (action == AMOTION_EVENT_ACTION_POINTER_UP) {
            action = AMOTION_EVENT_ACTION_UP;
        } else {
            // Can't happen.
            ALOG_ASSERT(false);
        }
    }
    NotifyMotionArgs args(when, getDeviceId(), source, policyFlags,
            action, actionButton, flags, metaState, buttonState, edgeFlags,
            mViewport.displayId, pointerCount, pointerProperties, pointerCoords,
            xPrecision, yPrecision, downTime);
    getListener()->notifyMotion(&args);
}
//补充: 此函数对数据进行二次转换, 与屏幕方向等因素有关
void TouchInputMapper::cookPointerData() {
  ALOGD("ALog cookPointerData");
    uint32_t currentPointerCount = mCurrentRawState.rawPointerData.pointerCount;
    mCurrentCookedState.cookedPointerData.clear();
    mCurrentCookedState.cookedPointerData.pointerCount = currentPointerCount;
    mCurrentCookedState.cookedPointerData.hoveringIdBits =
            mCurrentRawState.rawPointerData.hoveringIdBits;
    mCurrentCookedState.cookedPointerData.touchingIdBits =
            mCurrentRawState.rawPointerData.touchingIdBits;
    if (mCurrentCookedState.cookedPointerData.pointerCount == 0) {
        mCurrentCookedState.buttonState = 0;
    } else {
        mCurrentCookedState.buttonState = mCurrentRawState.buttonState;
    }
    // Walk through the the active pointers and map device coordinates onto
    // surface coordinates and adjust for display orientation.
    for (uint32_t i = 0; i < currentPointerCount; i++) {
        const RawPointerData::Pointer& in = mCurrentRawState.rawPointerData.pointers[i];
        // Size
        float touchMajor, touchMinor, toolMajor, toolMinor, size;
        switch (mCalibration.sizeCalibration) {
        case Calibration::SIZE_CALIBRATION_GEOMETRIC:
        case Calibration::SIZE_CALIBRATION_DIAMETER:
        case Calibration::SIZE_CALIBRATION_BOX:
        case Calibration::SIZE_CALIBRATION_AREA:
            if (mRawPointerAxes.touchMajor.valid && mRawPointerAxes.toolMajor.valid) {
                touchMajor = in.touchMajor;
                touchMinor = mRawPointerAxes.touchMinor.valid ? in.touchMinor : in.touchMajor;
                toolMajor = in.toolMajor;
                toolMinor = mRawPointerAxes.toolMinor.valid ? in.toolMinor : in.toolMajor;
                size = mRawPointerAxes.touchMinor.valid
                        ? avg(in.touchMajor, in.touchMinor) : in.touchMajor;
            } else if (mRawPointerAxes.touchMajor.valid) {
                toolMajor = touchMajor = in.touchMajor;
                toolMinor = touchMinor = mRawPointerAxes.touchMinor.valid
                        ? in.touchMinor : in.touchMajor;
                size = mRawPointerAxes.touchMinor.valid
                        ? avg(in.touchMajor, in.touchMinor) : in.touchMajor;
            } else if (mRawPointerAxes.toolMajor.valid) {
                touchMajor = toolMajor = in.toolMajor;
                touchMinor = toolMinor = mRawPointerAxes.toolMinor.valid
                        ? in.toolMinor : in.toolMajor;
                size = mRawPointerAxes.toolMinor.valid
                        ? avg(in.toolMajor, in.toolMinor) : in.toolMajor;
            } else {
                ALOG_ASSERT(false, "No touch or tool axes.  "
                        "Size calibration should have been resolved to NONE.");
                touchMajor = 0;
                touchMinor = 0;
                toolMajor = 0;
                toolMinor = 0;
                size = 0;
            }
            if (mCalibration.haveSizeIsSummed && mCalibration.sizeIsSummed) {
                uint32_t touchingCount =
                        mCurrentRawState.rawPointerData.touchingIdBits.count();
                if (touchingCount > 1) {
                    touchMajor /= touchingCount;
                    touchMinor /= touchingCount;
                    toolMajor /= touchingCount;
                    toolMinor /= touchingCount;
                    size /= touchingCount;
                }
            }
            if (mCalibration.sizeCalibration == Calibration::SIZE_CALIBRATION_GEOMETRIC) {
                touchMajor *= mGeometricScale;
                touchMinor *= mGeometricScale;
                toolMajor *= mGeometricScale;
                toolMinor *= mGeometricScale;
            } else if (mCalibration.sizeCalibration == Calibration::SIZE_CALIBRATION_AREA) {
                touchMajor = touchMajor > 0 ? sqrtf(touchMajor) : 0;
                touchMinor = touchMajor;
                toolMajor = toolMajor > 0 ? sqrtf(toolMajor) : 0;
                toolMinor = toolMajor;
            } else if (mCalibration.sizeCalibration == Calibration::SIZE_CALIBRATION_DIAMETER) {
                touchMinor = touchMajor;
                toolMinor = toolMajor;
            }
            mCalibration.applySizeScaleAndBias(&touchMajor);
            mCalibration.applySizeScaleAndBias(&touchMinor);
            mCalibration.applySizeScaleAndBias(&toolMajor);
            mCalibration.applySizeScaleAndBias(&toolMinor);
            size *= mSizeScale;
            break;
        default:
            touchMajor = 0;
            touchMinor = 0;
            toolMajor = 0;
            toolMinor = 0;
            size = 0;
            break;
        }
        // Pressure
        float pressure;
        switch (mCalibration.pressureCalibration) {
        case Calibration::PRESSURE_CALIBRATION_PHYSICAL:
        case Calibration::PRESSURE_CALIBRATION_AMPLITUDE:
            pressure = in.pressure * mPressureScale;
            break;
        default:
            pressure = in.isHovering ? 0 : 1;
            break;
        }
        // Tilt and Orientation
        float tilt;
        float orientation;
        if (mHaveTilt) {
            float tiltXAngle = (in.tiltX - mTiltXCenter) * mTiltXScale;
            float tiltYAngle = (in.tiltY - mTiltYCenter) * mTiltYScale;
            orientation = atan2f(-sinf(tiltXAngle), sinf(tiltYAngle));
            tilt = acosf(cosf(tiltXAngle) * cosf(tiltYAngle));
        } else {
            tilt = 0;
            switch (mCalibration.orientationCalibration) {
            case Calibration::ORIENTATION_CALIBRATION_INTERPOLATED:
                orientation = in.orientation * mOrientationScale;
                break;
            case Calibration::ORIENTATION_CALIBRATION_VECTOR: {
                int32_t c1 = signExtendNybble((in.orientation & 0xf0) >> 4);
                int32_t c2 = signExtendNybble(in.orientation & 0x0f);
                if (c1 != 0 || c2 != 0) {
                    orientation = atan2f(c1, c2) * 0.5f;
                    float confidence = hypotf(c1, c2);
                    float scale = 1.0f + confidence / 16.0f;
                    touchMajor *= scale;
                    touchMinor /= scale;
                    toolMajor *= scale;
                    toolMinor /= scale;
                } else {
                    orientation = 0;
                }
                break;
            }
            default:
                orientation = 0;
            }
        }
        // Distance
        float distance;
        switch (mCalibration.distanceCalibration) {
        case Calibration::DISTANCE_CALIBRATION_SCALED:
            distance = in.distance * mDistanceScale;
            break;
        default:
            distance = 0;
        }
        // Coverage
        int32_t rawLeft, rawTop, rawRight, rawBottom;
        switch (mCalibration.coverageCalibration) {
        case Calibration::COVERAGE_CALIBRATION_BOX:
            rawLeft = (in.toolMinor & 0xffff0000) >> 16;
            rawRight = in.toolMinor & 0x0000ffff;
            rawBottom = in.toolMajor & 0x0000ffff;
            rawTop = (in.toolMajor & 0xffff0000) >> 16;
            break;
        default:
            rawLeft = rawTop = rawRight = rawBottom = 0;
            break;
        }
        // Adjust X,Y coords for device calibration
        // TODO: Adjust coverage coords?
        float xTransformed = in.x, yTransformed = in.y;
        mAffineTransform.applyTo(xTransformed, yTransformed);
        // Adjust X, Y, and coverage coords for surface orientation.
        float x, y;
        float left, top, right, bottom;
  /*ALOGD("ALog deviceName %s", getDeviceName().string());
  //AnsonCode rotation
  int rot = DISPLAY_ORIENTATION_0;
  if(mSurfaceOrientation == DISPLAY_ORIENTATION_180)rot = DISPLAY_ORIENTATION_0;
  else if(mSurfaceOrientation == DISPLAY_ORIENTATION_0)rot = DISPLAY_ORIENTATION_180;*/
        switch (mSurfaceOrientation) {
        case DISPLAY_ORIENTATION_90:
            x = float(yTransformed - mRawPointerAxes.y.minValue) * mYScale + mYTranslate;
            y = float(mRawPointerAxes.x.maxValue - xTransformed) * mXScale + mXTranslate;
            left = float(rawTop - mRawPointerAxes.y.minValue) * mYScale + mYTranslate;
            right = float(rawBottom- mRawPointerAxes.y.minValue) * mYScale + mYTranslate;
            bottom = float(mRawPointerAxes.x.maxValue - rawLeft) * mXScale + mXTranslate;
            top = float(mRawPointerAxes.x.maxValue - rawRight) * mXScale + mXTranslate;
            orientation -= M_PI_2;
            if (mOrientedRanges.haveOrientation && orientation < mOrientedRanges.orientation.min) {
                orientation += (mOrientedRanges.orientation.max - mOrientedRanges.orientation.min);
            }
            break;
        case DISPLAY_ORIENTATION_180:
            x = float(mRawPointerAxes.x.maxValue - xTransformed) * mXScale + mXTranslate;
            y = float(mRawPointerAxes.y.maxValue - yTransformed) * mYScale + mYTranslate;
            left = float(mRawPointerAxes.x.maxValue - rawRight) * mXScale + mXTranslate;
            right = float(mRawPointerAxes.x.maxValue - rawLeft) * mXScale + mXTranslate;
            bottom = float(mRawPointerAxes.y.maxValue - rawTop) * mYScale + mYTranslate;
            top = float(mRawPointerAxes.y.maxValue - rawBottom) * mYScale + mYTranslate;
            orientation -= M_PI;
            if (mOrientedRanges.haveOrientation && orientation < mOrientedRanges.orientation.min) {
                orientation += (mOrientedRanges.orientation.max - mOrientedRanges.orientation.min);
            }
            break;
        case DISPLAY_ORIENTATION_270:
            x = float(mRawPointerAxes.y.maxValue - yTransformed) * mYScale + mYTranslate;
            y = float(xTransformed - mRawPointerAxes.x.minValue) * mXScale + mXTranslate;
            left = float(mRawPointerAxes.y.maxValue - rawBottom) * mYScale + mYTranslate;
            right = float(mRawPointerAxes.y.maxValue - rawTop) * mYScale + mYTranslate;
            bottom = float(rawRight - mRawPointerAxes.x.minValue) * mXScale + mXTranslate;
            top = float(rawLeft - mRawPointerAxes.x.minValue) * mXScale + mXTranslate;
            orientation += M_PI_2;
            if (mOrientedRanges.haveOrientation && orientation > mOrientedRanges.orientation.max) {
                orientation -= (mOrientedRanges.orientation.max - mOrientedRanges.orientation.min);
            }
            break;
        default:
            x = float(xTransformed - mRawPointerAxes.x.minValue) * mXScale + mXTranslate;
            y = float(yTransformed - mRawPointerAxes.y.minValue) * mYScale + mYTranslate;
            left = float(rawLeft - mRawPointerAxes.x.minValue) * mXScale + mXTranslate;
            right = float(rawRight - mRawPointerAxes.x.minValue) * mXScale + mXTranslate;
            bottom = float(rawBottom - mRawPointerAxes.y.minValue) * mYScale + mYTranslate;
            top = float(rawTop - mRawPointerAxes.y.minValue) * mYScale + mYTranslate;
            break;
        }
        // Write output coords.
        PointerCoords& out = mCurrentCookedState.cookedPointerData.pointerCoords[i];
        out.clear();
        out.setAxisValue(AMOTION_EVENT_AXIS_X, x);
        out.setAxisValue(AMOTION_EVENT_AXIS_Y, y);
        out.setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, pressure);
        out.setAxisValue(AMOTION_EVENT_AXIS_SIZE, size);
        out.setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR, touchMajor);
        out.setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR, touchMinor);
        out.setAxisValue(AMOTION_EVENT_AXIS_ORIENTATION, orientation);
        out.setAxisValue(AMOTION_EVENT_AXIS_TILT, tilt);
        out.setAxisValue(AMOTION_EVENT_AXIS_DISTANCE, distance);
        if (mCalibration.coverageCalibration == Calibration::COVERAGE_CALIBRATION_BOX) {
            out.setAxisValue(AMOTION_EVENT_AXIS_GENERIC_1, left);
            out.setAxisValue(AMOTION_EVENT_AXIS_GENERIC_2, top);
            out.setAxisValue(AMOTION_EVENT_AXIS_GENERIC_3, right);
            out.setAxisValue(AMOTION_EVENT_AXIS_GENERIC_4, bottom);
        } else {
            out.setAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR, toolMajor);
            out.setAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR, toolMinor);
        }
        // Write output properties.
        PointerProperties& properties =
                mCurrentCookedState.cookedPointerData.pointerProperties[i];
        uint32_t id = in.id;
        properties.clear();
        properties.id = id;
        properties.toolType = in.toolType;
        // Write id index.
        mCurrentCookedState.cookedPointerData.idToIndex[id] = i;
    }
}
相关文章
|
25天前
|
安全 Java 网络安全
Android远程连接和登录FTPS服务代码(commons.net库)
Android远程连接和登录FTPS服务代码(commons.net库)
22 1
|
1月前
|
Android开发 Swift iOS开发
探索安卓与iOS开发的差异:从代码到用户体验
【10月更文挑战第5天】在移动应用开发的广阔天地中,安卓和iOS两大平台各占半壁江山。它们在技术架构、开发环境及用户体验上有着根本的不同。本文通过比较这两种平台的开发过程,揭示背后的设计理念和技术选择如何影响最终产品。我们将深入探讨各自平台的代码示例,理解开发者面临的挑战,以及这些差异如何塑造用户的日常体验。
|
2月前
|
存储 Java Android开发
🔥Android开发大神揭秘:从菜鸟到高手,你的代码为何总是慢人一步?💻
在Android开发中,每位开发者都渴望应用响应迅速、体验流畅。然而,代码执行缓慢却是常见问题。本文将跟随一位大神的脚步,剖析三大典型案例:主线程阻塞导致卡顿、内存泄漏引发性能下降及不合理布局引起的渲染问题,并提供优化方案。通过学习这些技巧,你将能够显著提升应用性能,从新手蜕变为高手。
28 2
|
3月前
|
JSON JavaScript 前端开发
Android调用Vue中的JavaScript代码
Android调用Vue中的JavaScript代码
36 3
|
3月前
|
安全 Java 网络安全
Android远程连接和登录FTPS服务代码(commons.net库)
很多文章都介绍了FTPClient如何连接ftp服务器,但却很少有人说如何连接一台开了SSL认证的ftp服务器,现在代码来了。
100 2
|
4月前
|
存储 Java Android开发
🔥Android开发大神揭秘:从菜鸟到高手,你的代码为何总是慢人一步?💻
【7月更文挑战第28天】在Android开发中,每位开发者都追求极致的用户体验。然而,“代码执行慢”的问题时常困扰着开发者。通过案例分析,我们可探索从新手到高手的成长路径。
39 3
|
3月前
|
Java Android开发
Android项目架构设计问题之要提升代码的可读性和管理性如何解决
Android项目架构设计问题之要提升代码的可读性和管理性如何解决
38 0
|
4月前
|
API Android开发
Android 监听Notification 被清除实例代码
Android 监听Notification 被清除实例代码
|
5月前
|
JavaScript 前端开发 Android开发
kotlin安卓在Jetpack Compose 框架下使用webview , 网页中的JavaScript代码如何与native交互
在Jetpack Compose中使用Kotlin创建Webview组件,设置JavaScript交互:`@Composable`函数`ComposableWebView`加载网页并启用JavaScript。通过`addJavascriptInterface`添加`WebAppInterface`类,允许JavaScript调用Android方法如播放音频。当页面加载完成时,执行`onWebViewReady`回调。
|
5月前
|
Android开发
39. 【Android教程】触摸事件分发
39. 【Android教程】触摸事件分发
43 2