数的范围的算法

简介: 数的范围的算法

题目描述

给定一个按照升序排列的长度为n的整数数组,以及 q 个查询。

对于每个查询,返回一个元素k的起始位置和终止位置(位置从0开始计数)。

如果数组中不存在该元素,则返回“-1 -1”。

输入格式

第一行包含整数n和q,表示数组长度和询问个数。

第二行包含n个整数(均在1~10000范围内),表示完整数组。

接下来q行,每行包含一个整数k,表示一个询问元素。

输出格式

共q行,每行包含两个整数,表示所求元素的起始位置和终止位置。

如果数组中不存在该元素,则返回“-1 -1”。

数据范围

1≤n≤100000

1≤n≤100000

1≤q≤10000

1≤q≤10000

1≤k≤10000

1≤k≤10000

样例

输入样例:

6 3

1 2 2 3 3 4

3

4

5

输出样例:

3 4

5 5

-1 -1

分析:

本题是练习二分很好的一道题目,二分程序虽然简单,但是如果写之前不考虑好想要查找的是什么,十有八九会是死循环或者查找错误,就算侥幸写对了也只是运气好而已。用二分去查找元素要求数组的有序性或者拥有类似于有序的性质,对本题而言,一个包含重复元素的有序序列,要求输出某元素出现的起始位置和终止位置,翻译一下就是:在数组中查找某元素,找不到就输出-1,找到了就输出不小于该元素的最小位置和不大于该元素的最大位置。所以,需要写两个二分,一个需要找到>=x的第一个数,另一个需要找到<=x的最后一个数。查找不小于x的第一个位置,较为简单:

int l = 0, r = n - 1;
while (l < r) {
int mid = l + r >> 1;
if (a[mid] < x) l = mid + 1;
else r = mid;
}

当a[mid]小于x时,令l = mid + 1,mid及其左边的位置被排除了,可能出现解的位置是mid + 1及其后面的位置;当a[mid] >= x时,说明mid及其左边可能含有值为x的元素;当查找结束时,l与r相遇,l所在元素若是x则一定是x出现最小位置,因为l左边的元素必然都小于x。查找不大于x的最后一个位置,便不容易了:

int l1 = l, r1 = n;
while (l1 + 1 < r1) {
int mid = l1 + r1 >> 1;
if (a[mid] <= x) l1 = mid;
else r1 = mid;
}

要查找不大于x的最后一个位置,当a[mid] <= x时,待查找元素只可能在mid及其后面,所以l = mid;当a[mid] > x时,待查找元素只会在mid左边,令r = mid。

为什么不令r = mid - 1呢?因为如果按照上一个二分的写法,循环判断条件还是l < r,当只有两个元素比如2 2时,l指向第一个元素,r指向第二个元素,mid指向第一个元素,a[mid] <= x,l = mid还是指向第一个元素,指针不移动了,陷入死循环了,此刻l + 1 == r,未能退出循环。

那么直接把循环判断条件改成l + 1 < r呢?此时一旦只有两个元素,l和r差1,循环便不再执行,查找错误。

所以这里出现了二分的典型错误,l == r作为循环终止条件,会出现死循环,l + 1 == r作为循环终止条件,会出现查找错误。

问题如何解决,一种方法就是将查找的区间设置为左闭右开,比如待查找元素在[0,n - 1]范围内,可以写成[0,n),令r = n,这时候只有两个元素时,r是取最右边元素的后一个位置的,l和r相差2,还会执行循环。

现在再来理解上一段的r1 = mid,说明a[mid] > x时,r = mid就表示待查找元素会是在r的左边,因为r是开区间。上面这种写法修改了循环条件使得二分不会死循环,修改了区间的开闭性使得不会查找错误。另一种解决办法就是:

int l = 0, r = n - 1;
while (l < r)
{
int mid = l + r + 1 >> 1;
if (a[mid] <= x) l = mid;
else r = mid - 1;
}

不修改循环终止条件,想办法解决死循环的问题,首先想下为什么查找不小于x的第一个位置不会死循环?因为这时就算只有两个元素,l + 1 = r,mid = l,a[mid]小于x时l是会+1的,不小于x时r = mid也会缩小区间。

而查找不大于x的最后一个位置之所以会死循环是因为编程语言里面除以2的下取整性,试想下如果l + 1 = r时,mid = (l + r) / 2 = l,一旦a[mid] <= x,l = mid = l,区间并没有缩小,从而陷入死循环;如果一开始取mid为r,一旦a[mid] <= x,l = mid = r,区间缩小,否则r = mid - 1 = l区间缩小,l都会与r相遇,就不会陷入死循环了。

如何做到上取整呢?只需要取mid时在l + r后面再加1即可,这里l和r都是闭区间,所以当a[mid] > x时,r = mid - 1.

是否还有其他办法既不修改区间的开闭性和循环终止条件,又不用上取整呢?答案是肯定的。

int l1 = l, r1 = n - 1;
while (l1 < r1) {
int mid = l1 + r1 >> 1;
if (a[mid] <= x) l1 = mid + 1;
else r1 = mid - 1;
}
printf(“%d %d\n”, l, l1 - (a[l1] == x ? 0 : 1));

我们之所以会进行第二轮查找不大于x的最后一个位置,是因为第一轮已经找到了一个等于x的位置。所以完全可以当a[mid] <= x时,令l = mid + 1,此时,l指向的元素可能是x也可能比x大,但是由于不论大小,l和r的指针都移动了,就不会陷入死循环了,最后,如果a[l] == x则,l就是x出现的最后的位置,否则,l - 1就是x出现的最后一个位置。或许有人会疑惑,当a[mid] <= x时,l已经右移,最后l不是肯定指向的是大于x的位置嘛,为什么也可能指向等于x的位置?这是因为一旦第一轮查找的x出现的位置就是x唯一出现的位置,当x出现在数组末尾时,l == r,循环不会执行,此刻l指向的还是x,所以加上这个判断就可以解决该问题了。这也是二分程序可能遇见的第三种问题,当左右指针都移动时,待查找元素处在元素末尾会引起查找错误。总的代码如下:

#include
using namespace std;
const int maxn = 100005;
int n, q, x, a[maxn];
int main() {
scanf(“%d%d”, &n, &q);
for (int i = 0; i < n; i++) scanf(“%d”, &a[i]);
while (q–) {
scanf(“%d”, &x);
int l = 0, r = n - 1;
while (l < r) {
int mid = l + r >> 1;
if (a[mid] < x) l = mid + 1;
else r = mid;
}
if (a[l] != x) {
printf(“-1 -1\n”);
continue;
}
int l1 = l, r1 = n;
while (l1 + 1 < r1) {
int mid = l1 + r1 >> 1;
if (a[mid] <= x) l1 = mid;
else r1 = mid;
}
printf(“%d %d\n”, l, l1);
}
return 0;
}

(补充说明:没想到写的众多题解里会是这篇获赞最多,一直尝试用费曼技巧去写题解,每篇题解都尽可能的写的详尽。如果大佬们看y总视频有不明白的地方,欢迎造访个人博客 昂昂累世士的博客 ,目前更新完成的博客有剑指offer,算法基础课,正在更新的有算法提高课(更新一百多篇了),还有早期写的一些算法竞赛进阶指南的题解,如果博客题解中有不明白或者写的不好的地方,欢迎留言或者私聊。)


相关文章
|
7月前
1023 组个最小数 (20 分)
1023 组个最小数 (20 分)
|
2月前
|
JSON 人工智能 自然语言处理
剖析大模型连“Strawberry”的“r”都数不对的原因
本文将从两个常见的大模型翻车问题入手解析这些问题背后体现的大模型技术原理,并解释了为什么会导致这些问题,接着我们利用CoT(思维链)方法解决这些问题并基于上述原理试图剖析CoT方法起作用的可能原因,最后提出【理由先行】风格这一简单有效的Prompt Trick。
|
8月前
1679.K和数对的最大数目
1679.K和数对的最大数目
42 0
随机1-100的数循环找出88的次数
随机1-100的数循环找出88的次数
93 0
|
Java
如何计算线程数的最优值?——咱有公式
如何计算线程数的最优值?——咱有公式
242 0
如何计算线程数的最优值?——咱有公式
|
C语言 C++
1023 组个最小数 (20 分)
给定数字 0-9 各若干个。你可以以任意顺序排列这些数字,但必须全部使用。目标是使得最后得到的数尽可能小(注意 0 不能做首位)。例如:给定两个 0,两个 1,三个 5,一个 8,我们得到的最小的数就是 10015558。 现给定数字,请编写程序输出能够组成的最小的数。
132 0
|
机器学习/深度学习 算法
算法:两个数之和
算法:两个数之和
146 0
算法:两个数之和