机器学习中的数学原理——向量内积

简介: 机器学习中的数学原理——向量内积

一、什么是内积

内积一般指点积。在数学中,数量积(dot product; scalar product,也称为点积)是接受在实数R上的两个向量并返回一个实数值标量的二元运算。它是欧几里得空间的标准内积。

两个向量a = [a1, a2,…, an]和b = [b1, b2,…, bn]的点积定义为:a·b=a1b1+a2b2+……+anbn。

二、案例分析

在上面的学习中,我们已经初步了解了二分类的问题,在最简单的二分类问题中,我们需要找到那条分界线,但是不是像我们之前回归那样,找直线的斜率和截距,而是要找向量。分类用图形来解释更容易理解,所以把它想象为有大小和方向的、 带箭头的向量比较好。

我们所要画的直线是使权重向量成为法线向量的直线。设权重向量为 w,那么那条直线的表达式就是这样的。

我们来慢慢解释上面这段话,权重向量就是我们想要知道的未知参数,w 是权重一词的英 文——weight 的首字母。上次学习回归时,我们为了求未知参数θ 做了很多事情,而 w 和 θ 是一样的。所以它们都是参数,只是叫法不同。上述的表达式就是两个向量的内积,我们也可以写成这样:

我们依然为图像的横纵分类案例举例,图像有宽和高的二维情况, 所以 n = 2 就可以了,表达式就可以写成:

法线是与某条直线相垂直的向量。我们设权重向量为w = (1, 1),那么刚才的内积表达式会变成什么样呢?只需要代入(1,1)进行计算就可以了

移项变形之后,表达式变成 x2 = −x1 了。这就是斜率为−1 的直线

在这张图上再画上刚才确定的权重向量 w = (1, 1) 就更容易理解了

权重向量 w 和这条直线是垂直的!这就是“使权重向量成为法线向量的直线”在图形上的解释。高中时我们还学过,用向量之间的夹角 θ和 cos 计算内积的表达式

这是内积的另一个表达式。用这个表达式也没有问题。表达式中 的 |w| 和 |x| 是向量的长,因此必定是正数。所以要想使内积为0,只能使 cos θ = 0。要想使 cos θ = 0,也就意味着 θ = 90◦ 或θ = 270◦ 。这两种情况也是直角。

最终找到与我画的直线成直角的权重向量就完成任务了。

当然,一开始并不存在你画的那种直线,而是要通过训练找到权重向量,然后才能得到与这个向量垂直的直线,最后根据这条直线就可以对数据进行分类了。


相关文章
|
1月前
|
机器学习/深度学习 存储 运维
分布式机器学习系统:设计原理、优化策略与实践经验
本文详细探讨了分布式机器学习系统的发展现状与挑战,重点分析了数据并行、模型并行等核心训练范式,以及参数服务器、优化器等关键组件的设计与实现。文章还深入讨论了混合精度训练、梯度累积、ZeRO优化器等高级特性,旨在提供一套全面的技术解决方案,以应对超大规模模型训练中的计算、存储及通信挑战。
66 4
|
2月前
|
机器学习/深度学习 自然语言处理 语音技术
探索机器学习中的深度学习模型:原理与应用
探索机器学习中的深度学习模型:原理与应用
46 0
|
3月前
|
机器学习/深度学习 算法 知识图谱
【机器学习】逻辑回归原理(极大似然估计,逻辑函数Sigmod函数模型详解!!!)
【机器学习】逻辑回归原理(极大似然估计,逻辑函数Sigmod函数模型详解!!!)
|
3月前
|
机器学习/深度学习 算法
机器学习入门(三):K近邻算法原理 | KNN算法原理
机器学习入门(三):K近邻算法原理 | KNN算法原理
|
3月前
|
机器学习/深度学习 API
机器学习入门(七):线性回归原理,损失函数和正规方程
机器学习入门(七):线性回归原理,损失函数和正规方程
|
3月前
|
机器学习/深度学习 程序员
【机器学习】朴素贝叶斯原理------迅速了解常见概率的计算
【机器学习】朴素贝叶斯原理------迅速了解常见概率的计算
|
3月前
|
机器学习/深度学习 算法
【机器学习】逻辑回归介绍(逻辑回归应用场景,原理,损失及优化详解!!!)
【机器学习】逻辑回归介绍(逻辑回归应用场景,原理,损失及优化详解!!!)
|
5月前
|
机器学习/深度学习 算法 搜索推荐
【机器学习】机器学习的基本概念、算法的工作原理、实际应用案例
机器学习是人工智能的一个分支,它使计算机能够在没有明确编程的情况下从数据中学习并改进其性能。机器学习的目标是让计算机自动学习模式和规律,从而能够对未知数据做出预测或决策。
159 2
|
4月前
|
机器学习/深度学习 人工智能 算法
探索人工智能:机器学习的基本原理与Python代码实践
【9月更文挑战第6天】本文深入探讨了人工智能领域中的机器学习技术,旨在通过简明的语言和实际的编码示例,为初学者提供一条清晰的学习路径。文章不仅阐述了机器学习的基本概念、主要算法及其应用场景,还通过Python语言展示了如何实现一个简单的线性回归模型。此外,本文还讨论了机器学习面临的挑战和未来发展趋势,以期激发读者对这一前沿技术的兴趣和思考。
|
5月前
|
机器学习/深度学习 数据采集 物联网
【机器学习】Google开源大模型Gemma2:原理、微调训练及推理部署实战
【机器学习】Google开源大模型Gemma2:原理、微调训练及推理部署实战
178 0