数据结构上机实践第14周项目1(3) - 验证算法(二叉排序树)

简介: 数据结构上机实践第14周项目1(3) - 验证算法(二叉排序树)

验证算法(二叉排序树)

项目要求如下:

认真阅读并验证二叉排序树相关算法。

(1)由整数序列{43,52,75,24,10,38,67,55,63,60}构造二叉排序树;

(2)输出用括号法表示的二叉排序树;

(3)用递归算法和非递归算法查找关键字55;

(4)分别删除43和55,输出删除后用括号法表示的二叉排序树。

实现源代码如下:

//*Copyright  (c)2017,烟台大学计算机与控制工程学院*                       
//*All rights reservrd.*                       
//*文件名称 :main.cpp*                       
//*作者:田长航*                    
//*完成时间:2017年11月29日*                        
//*版本号:v1.0*                    
//*问题描述:测试函数*                       
//*输入描述:无*                       
//*程序输出:无*
#include <stdio.h>
#include <malloc.h>
typedef int KeyType;
typedef char InfoType[10];
typedef struct node                 //记录类型
{
    KeyType key;                    //关键字项
    InfoType data;                  //其他数据域
    struct node *lchild,*rchild;    //左右孩子指针
} BSTNode;
//在p所指向的二叉排序树中,插入值为k的节点
int InsertBST(BSTNode *&p,KeyType k)
{
    if (p==NULL)                        //原树为空, 新插入的记录为根结点
    {
        p=(BSTNode *)malloc(sizeof(BSTNode));
        p->key=k;
        p->lchild=p->rchild=NULL;
        return 1;
    }
    else if (k==p->key)                 //树中存在相同关键字的结点,返回0
        return 0;
    else if (k<p->key)
        return InsertBST(p->lchild,k);  //插入到*p的左子树中
    else
        return InsertBST(p->rchild,k);  //插入到*p的右子树中
}
//由有n个元素的数组A,创建一个二叉排序树
BSTNode *CreateBST(KeyType A[],int n)   //返回BST树根结点指针
{
    BSTNode *bt=NULL;                   //初始时bt为空树
    int i=0;
    while (i<n)
    {
        InsertBST(bt,A[i]);             //将关键字A[i]插入二叉排序树T中
        i++;
    }
    return bt;                          //返回建立的二叉排序树的根指针
}
//输出一棵排序二叉树
void DispBST(BSTNode *bt)
{
    if (bt!=NULL)
    {
        printf("%d",bt->key);
        if (bt->lchild!=NULL || bt->rchild!=NULL)
        {
            printf("(");                        //有孩子结点时才输出(
            DispBST(bt->lchild);                //递归处理左子树
            if (bt->rchild!=NULL) printf(",");  //有右孩子结点时才输出,
            DispBST(bt->rchild);                //递归处理右子树
            printf(")");                        //有孩子结点时才输出)
        }
    }
}
//在bt指向的节点为根的排序二叉树中,查找值为k的节点。找不到返回NULL
BSTNode *SearchBST(BSTNode *bt,KeyType k)
{
    if (bt==NULL || bt->key==k)         //递归终结条件
        return bt;
    if (k<bt->key)
        return SearchBST(bt->lchild,k);  //在左子树中递归查找
    else
        return SearchBST(bt->rchild,k);  //在右子树中递归查找
}
//二叉排序树中查找的非递归算法
BSTNode *SearchBST1(BSTNode *bt,KeyType k)
{
    while (bt!=NULL)
    {
        if (k==bt->key)
            return bt;
        else if (k<bt->key)
            bt=bt->lchild;
        else
            bt=bt->rchild;
    }
    return NULL;
}
void Delete1(BSTNode *p,BSTNode *&r)  //当被删*p结点有左右子树时的删除过程
{
    BSTNode *q;
    if (r->rchild!=NULL)
        Delete1(p,r->rchild);   //递归找最右下结点
    else                        //找到了最右下结点*r
    {
        p->key=r->key;          //将*r的关键字值赋给*p
        q=r;
        r=r->lchild;            //直接将其左子树的根结点放在被删结点的位置上
        free(q);                //释放原*r的空间
    }
}
void Delete(BSTNode *&p)   //从二叉排序树中删除*p结点
{
    BSTNode *q;
    if (p->rchild==NULL)        //*p结点没有右子树的情况
    {
        q=p;
        p=p->lchild;            //直接将其右子树的根结点放在被删结点的位置上
        free(q);
    }
    else if (p->lchild==NULL)   //*p结点没有左子树的情况
    {
        q=p;
        p=p->rchild;            //将*p结点的右子树作为双亲结点的相应子树
        free(q);
    }
    else Delete1(p,p->lchild);  //*p结点既没有左子树又没有右子树的情况
}
int DeleteBST(BSTNode *&bt, KeyType k)  //在bt中删除关键字为k的结点
{
    if (bt==NULL)
        return 0;               //空树删除失败
    else
    {
        if (k<bt->key)
            return DeleteBST(bt->lchild,k); //递归在左子树中删除为k的结点
        else if (k>bt->key)
            return DeleteBST(bt->rchild,k); //递归在右子树中删除为k的结点
        else
        {
            Delete(bt);     //调用Delete(bt)函数删除*bt结点
            return 1;
        }
    }
}
int main()
{
    BSTNode *bt;
    int n=12,x=46;
    KeyType a[]= {25,18,46,2,53,39,32,4,74,67,60,11};
    bt=CreateBST(a,n);
    printf("BST:");
    DispBST(bt);
    printf("\n");
    printf("删除%d结点\n",x);
    if (SearchBST(bt,x)!=NULL)
    {
        DeleteBST(bt,x);
        printf("BST:");
        DispBST(bt);
        printf("\n");
    }
    return 0;
}

运行结果截图如下:

2018122814580746.png

相关文章
|
16天前
|
存储 机器学习/深度学习 算法
C 408—《数据结构》算法题基础篇—链表(下)
408考研——《数据结构》算法题基础篇之链表(下)。
79 29
|
16天前
|
存储 算法 C语言
C 408—《数据结构》算法题基础篇—链表(上)
408考研——《数据结构》算法题基础篇之链表(上)。
72 25
|
16天前
|
存储 人工智能 算法
C 408—《数据结构》算法题基础篇—数组(通俗易懂)
408考研——《数据结构》算法题基础篇之数组。(408算法题的入门)
58 23
|
1月前
|
存储 C语言 C++
【C++数据结构——栈与队列】顺序栈的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现顺序栈的基本运算。开始你的任务吧,祝你成功!​ 相关知识 初始化栈 销毁栈 判断栈是否为空 进栈 出栈 取栈顶元素 1.初始化栈 概念:初始化栈是为栈的使用做准备,包括分配内存空间(如果是动态分配)和设置栈的初始状态。栈有顺序栈和链式栈两种常见形式。对于顺序栈,通常需要定义一个数组来存储栈元素,并设置一个变量来记录栈顶位置;对于链式栈,需要定义节点结构,包含数据域和指针域,同时初始化栈顶指针。 示例(顺序栈): 以下是一个简单的顺序栈初始化示例,假设用C语言实现,栈中存储
142 77
|
1月前
|
C++
【C++数据结构——树】二叉树的性质(头歌实践教学平台习题)【合集】
本文档介绍了如何根据二叉树的括号表示串创建二叉树,并计算其结点个数、叶子结点个数、某结点的层次和二叉树的宽度。主要内容包括: 1. **定义二叉树节点结构体**:定义了包含节点值、左子节点指针和右子节点指针的结构体。 2. **实现构建二叉树的函数**:通过解析括号表示串,递归地构建二叉树的各个节点及其子树。 3. **使用示例**:展示了如何调用 `buildTree` 函数构建二叉树并进行简单验证。 4. **计算二叉树属性**: - 计算二叉树节点个数。 - 计算二叉树叶子节点个数。 - 计算某节点的层次。 - 计算二叉树的宽度。 最后,提供了测试说明及通关代
46 10
|
1月前
|
存储 C++
【C++数据结构——树】哈夫曼树(头歌实践教学平台习题) 【合集】
【数据结构——树】哈夫曼树(头歌实践教学平台习题)【合集】目录 任务描述 相关知识 测试说明 我的通关代码: 测试结果:任务描述 本关任务:编写一个程序构建哈夫曼树和生成哈夫曼编码。 相关知识 为了完成本关任务,你需要掌握: 1.如何构建哈夫曼树, 2.如何生成哈夫曼编码。 测试说明 平台会对你编写的代码进行测试: 测试输入: 1192677541518462450242195190181174157138124123 (用户分别输入所列单词的频度) 预
61 14
【C++数据结构——树】哈夫曼树(头歌实践教学平台习题) 【合集】
|
1月前
|
Java C++
【C++数据结构——树】二叉树的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现二叉树的基本运算。​ 相关知识 创建二叉树 销毁二叉树 查找结点 求二叉树的高度 输出二叉树 //二叉树节点结构体定义 structTreeNode{ intval; TreeNode*left; TreeNode*right; TreeNode(intx):val(x),left(NULL),right(NULL){} }; 创建二叉树 //创建二叉树函数(简单示例,手动构建) TreeNode*create
48 12
|
1月前
|
算法 C++
【C++数据结构——图】最小生成树(头歌实践教学平台习题) 【合集】
【数据结构——图】最小生成树(头歌实践教学平台习题)目录 任务描述 相关知识 测试说明 我的通关代码: 测试结果:【合集】任务描述 本关任务:编写一个程序求图的最小生成树。相关知识 为了完成本关任务,你需要掌握:1.建立邻接矩阵,2.Prim算法。建立邻接矩阵 上述带权无向图对应的二维数组,根据它建立邻接矩阵,如图1建立下列邻接矩阵。注意:INF表示无穷大,表示整数:32767 intA[MAXV][MAXV];Prim算法 普里姆(Prim)算法是一种构造性算法,从候选边中挑
44 10
|
1月前
|
存储 算法 C++
【C++数据结构——图】图的邻接矩阵和邻接表的存储(头歌实践教学平台习题)【合集】
本任务要求编写程序实现图的邻接矩阵和邻接表的存储。需掌握带权有向图、图的邻接矩阵及邻接表的概念。邻接矩阵用于表示顶点间的连接关系,邻接表则通过链表结构存储图信息。测试输入为图的顶点数、边数及邻接矩阵,预期输出为Prim算法求解结果。通关代码提供了完整的C++实现,包括输入、构建和打印邻接矩阵与邻接表的功能。
49 10
|
3天前
|
DataX
☀☀☀☀☀☀☀有关栈和队列应用的oj题讲解☼☼☼☼☼☼☼
### 简介 本文介绍了三种数据结构的实现方法:用两个队列实现栈、用两个栈实现队列以及设计循环队列。具体思路如下: 1. **用两个队列实现栈**: - 插入元素时,选择非空队列进行插入。 - 移除栈顶元素时,将非空队列中的元素依次转移到另一个队列,直到只剩下一个元素,然后弹出该元素。 - 判空条件为两个队列均为空。 2. **用两个栈实现队列**: - 插入元素时,选择非空栈进行插入。 - 移除队首元素时,将非空栈中的元素依次转移到另一个栈,再将这些元素重新放回原栈以保持顺序。 - 判空条件为两个栈均为空。