数据结构上机实践第八周项目8-稀疏矩阵的三元组表示的实现及应用

简介: 数据结构上机实践第八周项目8-稀疏矩阵的三元组表示的实现及应用

稀疏矩阵的三元组表示的实现及应用

在现代社会中,在一个大量的人群集体中,总会有和某个人有相互之间的关系或者单向关系的,那我们的矩阵也是如此,稀疏矩阵压缩存储的方式,便可以让这种关系一目了然,巧妙应用。

贺老师的慕课中,是这样展现的:

image.png

那么,本次实践需要建立多文件组织的工程项目,可以点击此处参考。

实现源代码如下:

1.tup.h

//*Copyright  (c)2017,烟台大学计算机与控制工程学院*             
//*All rights reservrd.*             
//*文件名称 :tup.h*             
//*作者:田长航*          
//*完成时间:2017年10月23日*              
//*版本号:v1.0*          
//*问题描述:包含定义稀疏矩阵的三元组表示数据结构的代码、宏定义、要实现算法的函数的声明*             
//*输入描述:无*             
//*程序输出:无*   
#ifndef TUP_H_INCLUDED
#define TUP_H_INCLUDED
#define M 6
#define N 7
#define MaxSize  100         //矩阵中非零元素最多个数
typedef int ElemType;
typedef struct
{
    int r;                  //行号
    int c;                  //列号
    ElemType d;             //元素值
} TupNode;                  //三元组定义
typedef struct
{
    int rows;               //行数
    int cols;               //列数
    int nums;               //非零元素个数
    TupNode data[MaxSize];
} TSMatrix;                 //三元组顺序表定义
void CreatMat(TSMatrix &t,ElemType A[M][N]);  //从一个二维稀疏矩阵创建其三元组表示
bool Value(TSMatrix &t,ElemType x,int i,int j);  //三元组元素赋值
bool Assign(TSMatrix t,ElemType &x,int i,int j); //将指定位置的元素值赋给变量
void DispMat(TSMatrix t);//输出三元组
void TranTat(TSMatrix t,TSMatrix &tb);//矩阵转置
#endif // TUP_H_INCLUDED

2.tup.cpp

//*Copyright  (c)2017,烟台大学计算机与控制工程学院*             
//*All rights reservrd.*             
//*文件名称 :tup.cpp*             
//*作者:田长航*          
//*完成时间:2017年10月23日*              
//*版本号:v1.0*          
//*问题描述:包含实现各种算法的函数的定义*             
//*输入描述:无*             
//*程序输出:无*    
#include "stdio.h"
#include "tup.h"
void CreatMat(TSMatrix &t,ElemType A[M][N])  //从一个二维稀疏矩阵创建其三元组表示
{
    int i,j;
    t.rows=M;
    t.cols=N;
    t.nums=0;
    for (i=0; i<M; i++)
    {
        for (j=0; j<N; j++)
            if (A[i][j]!=0)     //只存储非零元素
            {
                t.data[t.nums].r=i;
                t.data[t.nums].c=j;
                t.data[t.nums].d=A[i][j];
                t.nums++;
            }
    }
}
bool Value(TSMatrix &t,ElemType x,int i,int j)  //三元组元素赋值
{
    int k=0,k1;
    if (i>=t.rows || j>=t.cols)
        return false;               //失败时返回false
    while (k<t.nums && i>t.data[k].r) k++;                  //查找行
    while (k<t.nums && i==t.data[k].r && j>t.data[k].c) k++;//查找列
    if (t.data[k].r==i && t.data[k].c==j)   //存在这样的元素
        t.data[k].d=x;
    else                                    //不存在这样的元素时插入一个元素
    {
        for (k1=t.nums-1; k1>=k; k1--)
        {
            t.data[k1+1].r=t.data[k1].r;
            t.data[k1+1].c=t.data[k1].c;
            t.data[k1+1].d=t.data[k1].d;
        }
        t.data[k].r=i;
        t.data[k].c=j;
        t.data[k].d=x;
        t.nums++;
    }
    return true;                        //成功时返回true
}
bool Assign(TSMatrix t,ElemType &x,int i,int j)  //将指定位置的元素值赋给变量
{
    int k=0;
    if (i>=t.rows || j>=t.cols)
        return false;           //失败时返回false
    while (k<t.nums && i>t.data[k].r) k++;                  //查找行
    while (k<t.nums && i==t.data[k].r && j>t.data[k].c) k++;//查找列
    if (t.data[k].r==i && t.data[k].c==j)
        x=t.data[k].d;
    else
        x=0;                //在三元组中没有找到表示是零元素
    return true;            //成功时返回true
}
void DispMat(TSMatrix t)        //输出三元组
{
    int i;
    if (t.nums<=0)          //没有非零元素时返回
        return;
    printf("\t%d\t%d\t%d\n",t.rows,t.cols,t.nums);
    printf("\t------------------\n");
    for (i=0; i<t.nums; i++)
        printf("\t%d\t%d\t%d\n",t.data[i].r,t.data[i].c,t.data[i].d);
}
void TranTat(TSMatrix t,TSMatrix &tb)       //矩阵转置
{
    int p,q=0,v;                    //q为tb.data的下标
    tb.rows=t.cols;
    tb.cols=t.rows;
    tb.nums=t.nums;
    if (t.nums!=0)                  //当存在非零元素时执行转置
    {
        for (v=0; v<t.cols; v++)        //tb.data[q]中的记录以c域的次序排列
            for (p=0; p<t.nums; p++)    //p为t.data的下标
                if (t.data[p].c==v)
                {
                    tb.data[q].r=t.data[p].c;
                    tb.data[q].c=t.data[p].r;
                    tb.data[q].d=t.data[p].d;
                    q++;
                }
    }
}

3main.cpp

//*Copyright  (c)2017,烟台大学计算机与控制工程学院*             
//*All rights reservrd.*             
//*文件名称 :main.cpp*             
//*作者:田长航*          
//*完成时间:2017年10月23日*              
//*版本号:v1.0*          
//*问题描述:测试函数*             
//*输入描述:无*             
//*程序输出:无*   
#include <stdio.h>
#include "tup.h"
int main()
{
    TSMatrix t,tb;
    int x,y=10;
    int A[6][7]=
    {
        {0,0,1,0,0,0,0},
        {0,2,0,0,0,0,0},
        {3,0,0,0,0,0,0},
        {0,0,0,5,0,0,0},
        {0,0,0,0,6,0,0},
        {0,0,0,0,0,7,4}
    };
    CreatMat(t,A);
    printf("b:\n");
    DispMat(t);
    if (Assign(t,x,2,5)==true)  //调用时返回true
        printf("Assign(t,x,2,5)=>x=%d\n",x);
    else  //调用时返回false
        printf("Assign(t,x,2,5)=>参数错误\n");
    Value(t,y,2,5);
    printf("执行Value(t,10,2,5)\n");
    if (Assign(t,x,2,5)==true)  //调用时返回true
        printf("Assign(t,x,2,5)=>x=%d\n",x);
    else  //调用时返回false
        printf("Assign(t,x,2,5)=>参数错误\n");
    printf("b:\n");
    DispMat(t);
    TranTat(t,tb);
    printf("矩阵转置tb:\n");
    DispMat(tb);
    return 0;
}

运行结果截图如下:

image.png

相关文章
|
2月前
|
消息中间件 缓存 NoSQL
Redis各类数据结构详细介绍及其在Go语言Gin框架下实践应用
这只是利用Go语言和Gin框架与Redis交互最基础部分展示;根据具体业务需求可能需要更复杂查询、事务处理或订阅发布功能实现更多高级特性应用场景。
275 86
|
4月前
|
存储 监控 安全
企业上网监控系统中红黑树数据结构的 Python 算法实现与应用研究
企业上网监控系统需高效处理海量数据,传统数据结构存在性能瓶颈。红黑树通过自平衡机制,确保查找、插入、删除操作的时间复杂度稳定在 O(log n),适用于网络记录存储、设备信息维护及安全事件排序等场景。本文分析红黑树的理论基础、应用场景及 Python 实现,并探讨其在企业监控系统中的实践价值,提升系统性能与稳定性。
152 1
|
4月前
|
存储 监控 算法
公司员工泄密防护体系中跳表数据结构及其 Go 语言算法的应用研究
在数字化办公中,企业面临员工泄密风险。本文探讨使用跳表(Skip List)数据结构优化泄密防护系统,提升敏感数据监测效率。跳表以其高效的动态数据处理能力,为企业信息安全管理提供了可靠技术支持。
120 0
|
10月前
|
存储 C语言 C++
【C++数据结构——栈与队列】顺序栈的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现顺序栈的基本运算。开始你的任务吧,祝你成功!​ 相关知识 初始化栈 销毁栈 判断栈是否为空 进栈 出栈 取栈顶元素 1.初始化栈 概念:初始化栈是为栈的使用做准备,包括分配内存空间(如果是动态分配)和设置栈的初始状态。栈有顺序栈和链式栈两种常见形式。对于顺序栈,通常需要定义一个数组来存储栈元素,并设置一个变量来记录栈顶位置;对于链式栈,需要定义节点结构,包含数据域和指针域,同时初始化栈顶指针。 示例(顺序栈): 以下是一个简单的顺序栈初始化示例,假设用C语言实现,栈中存储
500 77
|
9月前
|
DataX
☀☀☀☀☀☀☀有关栈和队列应用的oj题讲解☼☼☼☼☼☼☼
### 简介 本文介绍了三种数据结构的实现方法:用两个队列实现栈、用两个栈实现队列以及设计循环队列。具体思路如下: 1. **用两个队列实现栈**: - 插入元素时,选择非空队列进行插入。 - 移除栈顶元素时,将非空队列中的元素依次转移到另一个队列,直到只剩下一个元素,然后弹出该元素。 - 判空条件为两个队列均为空。 2. **用两个栈实现队列**: - 插入元素时,选择非空栈进行插入。 - 移除队首元素时,将非空栈中的元素依次转移到另一个栈,再将这些元素重新放回原栈以保持顺序。 - 判空条件为两个栈均为空。
|
10月前
|
存储 C++
【C++数据结构——树】哈夫曼树(头歌实践教学平台习题) 【合集】
【数据结构——树】哈夫曼树(头歌实践教学平台习题)【合集】目录 任务描述 相关知识 测试说明 我的通关代码: 测试结果:任务描述 本关任务:编写一个程序构建哈夫曼树和生成哈夫曼编码。 相关知识 为了完成本关任务,你需要掌握: 1.如何构建哈夫曼树, 2.如何生成哈夫曼编码。 测试说明 平台会对你编写的代码进行测试: 测试输入: 1192677541518462450242195190181174157138124123 (用户分别输入所列单词的频度) 预
348 14
【C++数据结构——树】哈夫曼树(头歌实践教学平台习题) 【合集】
|
10月前
|
C++
【C++数据结构——树】二叉树的性质(头歌实践教学平台习题)【合集】
本文档介绍了如何根据二叉树的括号表示串创建二叉树,并计算其结点个数、叶子结点个数、某结点的层次和二叉树的宽度。主要内容包括: 1. **定义二叉树节点结构体**:定义了包含节点值、左子节点指针和右子节点指针的结构体。 2. **实现构建二叉树的函数**:通过解析括号表示串,递归地构建二叉树的各个节点及其子树。 3. **使用示例**:展示了如何调用 `buildTree` 函数构建二叉树并进行简单验证。 4. **计算二叉树属性**: - 计算二叉树节点个数。 - 计算二叉树叶子节点个数。 - 计算某节点的层次。 - 计算二叉树的宽度。 最后,提供了测试说明及通关代
191 10
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
1019 9
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
287 59
|
5月前
|
编译器 C语言 C++
栈区的非法访问导致的死循环(x64)
这段内容主要分析了一段C语言代码在VS2022中形成死循环的原因,涉及栈区内存布局和数组越界问题。代码中`arr[15]`越界访问,修改了变量`i`的值,导致`for`循环条件始终为真,形成死循环。原因是VS2022栈区从低地址到高地址分配内存,`arr`数组与`i`相邻,`arr[15]`恰好覆盖`i`的地址。而在VS2019中,栈区先分配高地址再分配低地址,因此相同代码表现不同。这说明编译器对栈区内存分配顺序的实现差异会导致程序行为不一致,需避免数组越界以确保代码健壮性。
118 0
栈区的非法访问导致的死循环(x64)

热门文章

最新文章