【底层原理之旅—深入JVM分析synchronized锁】|Java 刷题打卡

简介: 【底层原理之旅—深入JVM分析synchronized锁】|Java 刷题打卡

题目


深入JVM分析synchronized锁




知识点


Java对象内存结构


HotSpot虚拟机中,对象在内存中存储的布局可以分为三块区域:对象头(Header)、实例数据(Instance Data)和对齐填充(Padding)


image.png


对象头(Object Header)


markWord(标记字段)


用于存储对象自身的运行时数据, 如哈希码(HashCode)、GC分代年龄、锁状态标志、线程持有的锁、偏向线程ID、偏向时间戳等等,这部分数据的长度在32位和64位的虚拟机(暂 不考虑开启压缩指针的场景)中分别为32个和64个Bits


  • new一个空对象在32为系统中占用内存大小是8byte(对象头,在堆中)+4byte(对象的引用地址,在栈中)=12byte;
  • new一个空对象在64为系统中占用内存大小是16byte(对象头,在堆中)+8byte(对象的引用地址,在栈中)=24byte;如果开启了压缩指针机制 那么就是 8byte(对象头)+4byte的链接指针+4byte(栈中的引用地址)。



Mark Word被设计成一个非固定的数据结构以便在极小的空间内存储尽量多的信息,它会根据对象的状态复用自己的存储空间




无锁状

image.png

加锁状态

image.png




其中轻量级锁和偏向锁是Java 6 对 synchronized 锁进行优化后新增加的,稍后我们会简要分析



  • 这里我们主要分析一下重量级锁也就是通常说synchronized的对象锁,锁标识位为10其中指针指向的是monitor对象(也称为管程或监视器锁)的起始地址
  • 每个对象都存在着一个 monitor 与之关联,对象与其 monitor 之间的关系有存在多种实现方式,如monitor可以与对象一起创建销毁或当线程试图获取对象锁时自动生成,但当一个 monitor 被某个线程持有后,它便处于锁定状态
  • 在Java虚拟机(HotSpot)中,monitor是由ObjectMonitor实现的,其主要数据结构如下(位于HotSpot虚拟机源码ObjectMonitor.hpp文件,C++实现的)




拓展延伸


ObjectMonitor() {  
    _header       = NULL;  
    _count        = 0; //记录个数  
    _waiters      = 0,  
    _recursions   = 0;  
    _object       = NULL;  
    _owner        = NULL;  
    \_WaitSet      = NULL; //处于wait状态的线程,会被加入到\_WaitSet  
    _WaitSetLock  = 0 ;  
    _Responsible  = NULL ;  
    _succ         = NULL ;  
    _cxq          = NULL ;  
    FreeNext      = NULL ;  
    _EntryList    = NULL ; //处于等待锁block状态的线程,会被加入到该列表  
    _SpinFreq     = 0 ;  
    _SpinClock    = 0 ;  
    OwnerIsThread = 0 ;  
  }  
复制代码


ObjectMonitor中有两个队列,WaitSet 和 EntryList,用来保存ObjectWaiter对象列表( 每个等待锁的线程都会被封装成ObjectWaiter对象),owner指向持有ObjectMonitor对象的线程当多个线程同时访问一段同步代码时



  • 首先会进入 EntryList 集合,当线程获取到对象的monitor后进入Owner区域,并把monitor中的owner变量设置为当前线程同时monitor中的计数器count加1。
  • 若线程调用 wait() 方法,将释放当前持有的monitor,owner变量恢复为null,count自减1,同时该线程进入 WaitSet集合中等待被唤醒
  • 若当前线程执行完毕也将释放monitor(锁)并复位变量的值,以便其他线程进入获取monitor(锁)


image.png


由此看来,monitor对象存在于每个Java对象的对象头中(存储的指针的指向),synchronized锁便是通过这种方式获取锁的,也是为什么Java中任意对象可以作为锁的原因,同时也是notify/notifyAll/wait等方法存在于顶级对象Object中的原因








相关文章
|
1月前
|
存储 算法 Java
大厂面试高频:什么是自旋锁?Java 实现自旋锁的原理?
本文详解自旋锁的概念、优缺点、使用场景及Java实现。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:什么是自旋锁?Java 实现自旋锁的原理?
|
1月前
|
Java
Java之CountDownLatch原理浅析
本文介绍了Java并发工具类`CountDownLatch`的使用方法、原理及其与`Thread.join()`的区别。`CountDownLatch`通过构造函数接收一个整数参数作为计数器,调用`countDown`方法减少计数,`await`方法会阻塞当前线程,直到计数为零。文章还详细解析了其内部机制,包括初始化、`countDown`和`await`方法的工作原理,并给出了一个游戏加载场景的示例代码。
Java之CountDownLatch原理浅析
|
1月前
|
Java 索引 容器
Java ArrayList扩容的原理
Java 的 `ArrayList` 是基于数组实现的动态集合。初始时,`ArrayList` 底层创建一个空数组 `elementData`,并设置 `size` 为 0。当首次添加元素时,会调用 `grow` 方法将数组扩容至默认容量 10。之后每次添加元素时,如果当前数组已满,则会再次调用 `grow` 方法进行扩容。扩容规则为:首次扩容至 10,后续扩容至原数组长度的 1.5 倍或根据实际需求扩容。例如,当需要一次性添加 100 个元素时,会直接扩容至 110 而不是 15。
Java ArrayList扩容的原理
|
1月前
|
缓存 Java
java中的公平锁、非公平锁、可重入锁、递归锁、自旋锁、独占锁和共享锁
本文介绍了几种常见的锁机制,包括公平锁与非公平锁、可重入锁与不可重入锁、自旋锁以及读写锁和互斥锁。公平锁按申请顺序分配锁,而非公平锁允许插队。可重入锁允许线程多次获取同一锁,避免死锁。自旋锁通过循环尝试获取锁,减少上下文切换开销。读写锁区分读锁和写锁,提高并发性能。文章还提供了相关代码示例,帮助理解这些锁的实现和使用场景。
java中的公平锁、非公平锁、可重入锁、递归锁、自旋锁、独占锁和共享锁
|
13天前
|
监控 算法 Java
jvm-48-java 变更导致压测应用性能下降,如何分析定位原因?
【11月更文挑战第17天】当JVM相关变更导致压测应用性能下降时,可通过检查变更内容(如JVM参数、Java版本、代码变更)、收集性能监控数据(使用JVM监控工具、应用性能监控工具、系统资源监控)、分析垃圾回收情况(GC日志分析、内存泄漏检查)、分析线程和锁(线程状态分析、锁竞争分析)及分析代码执行路径(使用代码性能分析工具、代码审查)等步骤来定位和解决问题。
|
24天前
|
Java 开发者
Java 中的锁是什么意思,有哪些分类?
在Java多线程编程中,锁用于控制多个线程对共享资源的访问,确保数据一致性和正确性。本文探讨锁的概念、作用及分类,包括乐观锁与悲观锁、自旋锁与适应性自旋锁、公平锁与非公平锁、可重入锁和读写锁,同时提供使用锁时的注意事项,帮助开发者提高程序性能和稳定性。
44 3
|
1月前
|
存储 Java 关系型数据库
在Java开发中,数据库连接是应用与数据交互的关键环节。本文通过案例分析,深入探讨Java连接池的原理与最佳实践
在Java开发中,数据库连接是应用与数据交互的关键环节。本文通过案例分析,深入探讨Java连接池的原理与最佳实践,包括连接创建、分配、复用和释放等操作,并通过电商应用实例展示了如何选择合适的连接池库(如HikariCP)和配置参数,实现高效、稳定的数据库连接管理。
58 2
|
13天前
|
设计模式 Java 开发者
Java多线程编程的陷阱与解决方案####
本文深入探讨了Java多线程编程中常见的问题及其解决策略。通过分析竞态条件、死锁、活锁等典型场景,并结合代码示例和实用技巧,帮助开发者有效避免这些陷阱,提升并发程序的稳定性和性能。 ####
|
11天前
|
存储 监控 小程序
Java中的线程池优化实践####
本文深入探讨了Java中线程池的工作原理,分析了常见的线程池类型及其适用场景,并通过实际案例展示了如何根据应用需求进行线程池的优化配置。文章首先介绍了线程池的基本概念和核心参数,随后详细阐述了几种常见的线程池实现(如FixedThreadPool、CachedThreadPool、ScheduledThreadPool等)的特点及使用场景。接着,通过一个电商系统订单处理的实际案例,分析了线程池参数设置不当导致的性能问题,并提出了相应的优化策略。最终,总结了线程池优化的最佳实践,旨在帮助开发者更好地利用Java线程池提升应用性能和稳定性。 ####
|
13天前
|
缓存 Java 开发者
Java多线程编程的陷阱与最佳实践####
本文深入探讨了Java多线程编程中常见的陷阱,如竞态条件、死锁和内存一致性错误,并提供了实用的避免策略。通过分析典型错误案例,本文旨在帮助开发者更好地理解和掌握多线程环境下的编程技巧,从而提升并发程序的稳定性和性能。 ####