【JVM故障问题排查心得】「Java技术体系方向」Java虚拟机内存优化之虚拟机参数调优原理介绍(一)

简介: 【JVM故障问题排查心得】「Java技术体系方向」Java虚拟机内存优化之虚拟机参数调优原理介绍

内容简介

本文主要针对于综合层面上进行分析JVM优化方案总结和列举调优参数计划。主要包含:

  • 调优之逃逸分析(栈上分配)
  • 调优之线程局部缓存(TLAB)
  • 调优之G1回收器

栈上分配与逃逸分析

-XX:+DoEscapeAnalysis

逃逸分析(Escape Analysis)

逃逸分析的基本行为就是分析对象动态作用域:当一个对象在方法中被定义后,它可能被外部方法所引用,称为方法逃逸。

方法逃逸的几种方式如下:

java

复制代码

public class EscapeTest {
  public static Object obj;
    // 给全局变量赋值,发生逃逸
    public void globalVariableEscape() {
        obj = new Object();
    }
    // 方法返回值,发生逃逸
    public Object methodEscape() {
        return new Object();
    }
    // 实例引用发生逃逸
    public void instanceEscape() {
        test(this);
    }
}

栈上分配

栈上分配是Java虚拟机提供的一种优化技术

基本思想

"对于那些线程私有的对象(指的是不可能被其他线程访问的对象),可以将它们直接分配在栈上,而不是分配在堆上"。

分配在栈上的好处:可以在函数调用结束后自行销毁,而不需要垃圾回收器的介入,减轻GC压力,从而提升系统的性能

使用场景

线程私有对象
  • 受虚拟机栈空间的约束,适用小对象,大对象无法触发虚拟机栈上分配。
  • 线程私有变量,大对象虚拟机会分配到TLAB中,TLAB(Thread Local Allocation Buffer)
  • 在栈上分配该对象的内存,当栈帧从Java虚拟机栈中弹出,就自动销毁这个对象。减小垃圾回收器压力。

虚拟机内存逻辑图

JVM内存分配源码:

new关键字直接进行分配内存机制,源码如下:

java

复制代码

CASE(_new): {
        u2 index = Bytes::get_Java_u2(pc+1);
        ConstantPool* constants = istate->method()->constants();
        // 如果目标Java类已经解析
        if (!constants->tag_at(index).is_unresolved_klass()) {
          // Make sure klass is initialized and doesn't have a finalizer
          Klass* entry = constants->slot_at(index).get_klass();
          assert(entry->is_klass(), "Should be resolved klass");
          Klass* k_entry = (Klass*) entry;
          assert(k_entry->oop_is_instance(), "Should be InstanceKlass");
          InstanceKlass* ik = (InstanceKlass*) k_entry;
          // 如果符合快速分配场景
          if ( ik->is_initialized() && ik->can_be_fastpath_allocated() ) {
            size_t obj_size = ik->size_helper();
            oop result = NULL;
            // If the TLAB isn't pre-zeroed then we'll have to do it
            bool need_zero = !ZeroTLAB;
            if (UseTLAB) {
              result = (oop) THREAD->tlab().allocate(obj_size);
            }
            // 如果TLAB分配失败,就在Eden区分配
            if (result == NULL) {
              need_zero = true;
              // Try allocate in shared eden
        retry:
              // 指针碰撞分配
              HeapWord* compare_to = *Universe::heap()->top_addr();
              HeapWord* new_top = compare_to + obj_size;
              if (new_top <= *Universe::heap()->end_addr()) {
                if (Atomic::cmpxchg_ptr(new_top, Universe::heap()->top_addr(), compare_to) != compare_to) {
                  goto retry;
                }
                result = (oop) compare_to;
              }
            }
            if (result != NULL) {
              // Initialize object (if nonzero size and need) and then the header
              // TLAB区清零
              if (need_zero ) {
                HeapWord* to_zero = (HeapWord*) result + sizeof(oopDesc) / oopSize;
                obj_size -= sizeof(oopDesc) / oopSize;
                if (obj_size > 0 ) {
                  memset(to_zero, 0, obj_size * HeapWordSize);
                }
              }
              if (UseBiasedLocking) {
                result->set_mark(ik->prototype_header());
              } else {
                result->set_mark(markOopDesc::prototype());
              }
              result->set_klass_gap(0);
              result->set_klass(k_entry);
              // 将对象地址压入操作数栈栈顶
              SET_STACK_OBJECT(result, 0);
              // 更新程序计数器PC,取下一条字节码指令,继续处理
              UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
            }
          }
        }
        // Slow case allocation
        // 慢分配
        CALL_VM(InterpreterRuntime::_new(THREAD, METHOD->constants(), index),
                handle_exception);
        SET_STACK_OBJECT(THREAD->vm_result(), 0);
        THREAD->set_vm_result(NULL);
        UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
      }

代码总体逻辑

JVM再分配内存时,总是优先使用快分配策略,当快分配失败时,才会启用慢分配策略

  1. 如果Java类没有被解析过,直接进入慢分配逻辑。
  2. 快速分配策略,如果没有开启栈上分配或者不符合条件则会进行TLAB分配。
  3. 快速分配策略,如果TLAB分配失败,则尝试Eden区分配。
  4. 如果Eden区分配失败,则进入慢分配策略。
  5. 如果对象满足直接进入老年代的条件,那就直接进入老年代分配。
  6. 快速分配,对于热点代码,如果开启逃逸分析,JVM自会执行栈上分配或者标量替换等优化方案

在某些场景使用栈上分配

设置JVM运行参数:

-Xmx10m -Xms10m -XX:+DoEscapeAnalysis -XX:-UseTLAB -XX:+PrintGC

开启逃逸模式,关闭TLAB

java

复制代码

/**
 * @description 开启逃逸模式,关闭线程本地缓存模式(TLAB)(jdk1.8默认开启)
 * -Xmx10m -Xms10m    -XX:+DoEscapeAnalysis  -XX:-UseTLAB  -XX:+PrintGC  
 */
public class AllocationOnStack {
    public static void main(String[] args) throws InterruptedException {
        long start = System.currentTimeMillis();
        for (int index = 0; index < 100000000; index++) {
            allocate();
        }
        long end = System.currentTimeMillis();
        System.out.println((end - start)+" ms");
        Thread.sleep(1000*1000);
        // 看后台堆情况,来佐证关闭逃逸优化后,是走的堆分配。
    }
    public static void allocate() {
        byte[] bytes = new byte[2];
        bytes[0] = 1;
        bytes[1] = 1;
    }
}

运行结果

csharp

复制代码

[GC (Allocation Failure)  2048K->520K(9728K), 0.0008938 secs]
[GC (Allocation Failure)  2568K->520K(9728K), 0.0006386 secs]
6 ms

jstat -gc pid

查看内存使用情况:

结论

看出栈上分配机制的速度非常快,只需要6ms就完成了实现GC

调整JVM运行参数

关闭逃逸模式,开启TLAB

-Xmx10m -Xms10m -XX:-DoEscapeAnalysis -XX:+UseTLAB -XX:+PrintGC

查看内存使用情况:

运行结果

csharp

复制代码

[GC (Allocation Failure)  2048K->504K(9728K), 0.0013831 secs]
[GC (Allocation Failure)  2552K->512K(9728K), 0.0010576 secs]
[GC (Allocation Failure)  2560K->400K(9728K), 0.0022408 secs]
[GC (Allocation Failure)  2448K->448K(9728K), 0.0006095 secs]
[GC (Allocation Failure)  2496K->416K(9728K), 0.0010540 secs]
[GC (Allocation Failure)  2464K->464K(8704K), 0.0007620 secs]
[GC (Allocation Failure)  1488K->381K(9216K), 0.0007714 secs]
[GC (Allocation Failure)  1405K->381K(9216K), 0.0004409 secs]
[GC (Allocation Failure)  1405K->381K(9216K), 0.0004725 secs]
.......
[GC (Allocation Failure)  2429K->381K(9728K), 0.0008293 secs]
[GC (Allocation Failure)  2429K->381K(9728K), 0.0009006 secs]
[GC (Allocation Failure)  2429K->381K(9728K), 0.0005553 secs]
[GC (Allocation Failure)  2429K->381K(9728K), 0.0005077 secs]
894 ms

结论

可以看出来,关闭了栈上分配后,不但YGC次数增加了,并且总体事件也变长了,总体事件894ms

调整JVM运行参数

-Xmx10m -Xms10m -XX:-DoEscapeAnalysis -XX:-UseTLAB -XX:+PrintGC

关闭逃逸,关闭TLAB

运行结果

csharp

复制代码

[GC (Allocation Failure)  2048K->472K(9728K), 0.0007073 secs]
[GC (Allocation Failure)  2520K->528K(9728K), 0.0009216 secs]
[GC (Allocation Failure)  2576K->504K(9728K), 0.0005897 secs]
[GC (Allocation Failure)  2551K->424K(9728K), 0.0005780 secs]
[GC (Allocation Failure)  2472K->440K(9728K), 0.0006923 secs]
[GC (Allocation Failure)  2488K->456K(8704K), 0.0006277 secs]
[GC (Allocation Failure)  1480K->389K(9216K), 0.0005560 secs]
.......
[GC (Allocation Failure)  2437K->389K(9728K), 0.0003227 secs]
[GC (Allocation Failure)  2437K->389K(9728K), 0.0004264 secs]
[GC (Allocation Failure)  2437K->389K(9728K), 0.0004396 secs]
[GC (Allocation Failure)  2437K->389K(9728K), 0.0002773 secs]
[GC (Allocation Failure)  2437K->389K(9728K), 0.0002766 secs]
1718 ms

查看内存使用情况:

运行结果对比

  1. 运行耗时(开启逃逸 VS关闭逃逸(开启TLAB)VS关闭逃逸(关闭TLAB)): 6ms VS 894ms VS 1718ms
  2. 虚拟机内存&回收(开启逃逸VS关闭逃逸):

调整分配空间大小

java

复制代码

/**
 * @since 2019/8/13  上午6:55
 * -Xmx10m -Xms10m    -XX:-DoEscapeAnalysis -XX:+UseTLAB  -XX:+PrintCommandLineFlags -XX:+PrintGC
 */
public class AllocationOnStack {
    private static final int _1B =  65;
    public static void main(String[] args) throws InterruptedException {
        long start = System.currentTimeMillis();
        for (int index = 0; index < 100000000; index++) {
            allocateBigSpace();
        }
        long end = System.currentTimeMillis();
        System.out.println(end - start);
        Thread.sleep(1000*1000);
        // 看后台堆情况,来佐证关闭逃逸优化后,是走的堆分配。
    }
    public static void allocate() {
        byte[] bytes = new byte[2];
        bytes[0] = 1;
        bytes[1] = 1;
    }
    public static void allocateBigSpace() {
        byte[] allocation1;
        allocation1 = new byte[1 * _1B];
    }
}


【JVM故障问题排查心得】「Java技术体系方向」Java虚拟机内存优化之虚拟机参数调优原理介绍(二)https://developer.aliyun.com/article/1471127

相关文章
|
3月前
|
存储 监控 算法
深入探索Java虚拟机(JVM)的内存管理机制
本文旨在为读者提供对Java虚拟机(JVM)内存管理机制的深入理解。通过详细解析JVM的内存结构、垃圾回收算法以及性能优化策略,本文不仅揭示了Java程序高效运行背后的原理,还为开发者提供了优化应用程序性能的实用技巧。不同于常规摘要仅概述文章大意,本文摘要将简要介绍JVM内存管理的关键点,为读者提供一个清晰的学习路线图。
|
4月前
|
Java
JVM内存参数
-Xmx[]:堆空间最大内存 -Xms[]:堆空间最小内存,一般设置成跟堆空间最大内存一样的 -Xmn[]:新生代的最大内存 -xx[use 垃圾回收器名称]:指定垃圾回收器 -xss:设置单个线程栈大小 一般设堆空间为最大可用物理地址的百分之80
|
5月前
|
存储 算法 Java
Java虚拟机(JVM)的内存管理与性能优化
本文深入探讨了Java虚拟机(JVM)的内存管理机制,包括堆、栈、方法区等关键区域的功能与作用。通过分析垃圾回收算法和调优策略,旨在帮助开发者理解如何有效提升Java应用的性能。文章采用通俗易懂的语言,结合具体实例,使读者能够轻松掌握复杂的内存管理概念,并应用于实际开发中。
|
5月前
|
监控 架构师 Java
JVM进阶调优系列(6)一文详解JVM参数与大厂实战调优模板推荐
本文详述了JVM参数的分类及使用方法,包括标准参数、非标准参数和不稳定参数的定义及其应用场景。特别介绍了JVM调优中的关键参数,如堆内存、垃圾回收器和GC日志等配置,并提供了大厂生产环境中常用的调优模板,帮助开发者优化Java应用程序的性能。
|
5月前
|
Java Android开发 开发者
【编程进阶知识】精细调控:掌握Eclipse JVM参数配置的艺术
本文详细介绍了如何在Eclipse中配置JVM参数,包括内存的初始和最大值设置。通过具体步骤和截图演示,帮助开发者掌握JVM参数的精细调控,以适应不同的开发和测试需求。
79 1
|
5天前
|
缓存 Linux 调度
【YashanDB数据库】VMware虚拟机使用默认安装,在掉电之后数据库无法启动
VMware虚拟机使用默认安装,在掉电之后数据库无法启动
|
3天前
|
IDE 测试技术 数据库
【YashanDB知识库】使用vmware虚拟机安装的YashanDB,本机无法访问
在 VMware 虚拟机中安装并测试 YashanDB,数据库及虚拟机运行正常,但本地 IDE 工具无法连接虚拟机中的数据库。问题可能与 VMware 网络适配器配置或网络模式(如 NAT、桥接)有关,导致网络通信异常。需检查虚拟机网络设置、IP 地址配置以及防火墙规则,确保本地与虚拟机间网络连通性。目前无明确修复版本。
|
8天前
|
Unix 虚拟化 iOS开发
FreeBSD 13.5 x86_64 OVF (sysin) - VMware 虚拟机模板
FreeBSD 13.5 x86_64 OVF (sysin) - VMware 虚拟机模板
24 1
FreeBSD 13.5 x86_64 OVF (sysin) - VMware 虚拟机模板
|
4月前
|
Ubuntu 网络安全 虚拟化
VMware虚拟机ping不通原因排查及分析
下面以 VMware 虚拟机为例进行介绍。
2761 3
|
22天前
|
存储 虚拟化
【2025最新】 神奇!VMware Workstation Pro虚拟机还原与删除功能,让你轻松应对各种场景!
删除和还原VMware虚拟机的操作步骤如下: **删除虚拟机:** 1. 选择要删除的虚拟机,右键点击并选择“移除”。 2. 这仅从列表中移除虚拟机,并未彻底删除。需前往VMware默认存储路径(如 `D:\VMware\data`),找到对应虚拟机文件夹并删除。 **还原虚拟机:** 1. 若误删虚拟机列表项目,可通过右键点击空白处,选择“打开”,找到保存虚拟机的路径文件夹。 2. 选择被删除虚拟机对应的 `.vmx` 配置文件并打开,即可在列表中恢复该虚拟机。 总结:VMware虚拟机可用于模拟多种操作系统和开发环境,掌握删除与还原技巧可提高使用效率。
84 8
【2025最新】 神奇!VMware Workstation Pro虚拟机还原与删除功能,让你轻松应对各种场景!