LINUX上安装Caffe

简介: LINUX上安装Caffe

法不孤起,仗境方生;道不虚行,遇缘即应。吾以为安装caffe很容易。结果网上搜索,都没有提供pip方法。


自己使用pip caffe2,又出错了。怎么办?只好下载源码编译。


 注意,目前caffe只支持Python2,Python3是不支持的。编译能够成功,无法运行。所以如果遇到这样的情况,老老实实的安装Python2,不要有侥幸心理。


安装依赖库

sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev \
                     libopencv-dev libhdf5-serial-dev protobuf-compiler
sudo apt-get install --no-install-recommends libboost-all-dev
sudo apt-get install libopenblas-dev liblapack-dev libatlas-base-dev
sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev
# 有可能需要的库
sudo pip install graphviz

 怎么这么多?管他,都装了吧。


 运气好,顺利安装。运气不好……提示什么卸载什么,再重新安装。



下载

https://github.com/BVLC/caffe


解压

 略。


安装python需要的东西

cd python

for req in $(cat requirements.txt); do sudo pip3 install $req; done

配置Makefile.config

sudo cp Makefile.config.example Makefile.config

 修改参数:


## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome!
# cuDNN acceleration switch (uncomment to build with cuDNN).
USE_CUDNN := 1
# CPU-only switch (uncomment to build without GPU support).
# CPU_ONLY := 1
# uncomment to disable IO dependencies and corresponding data layers
USE_OPENCV := 1
# USE_LEVELDB := 0
# USE_LMDB := 0
# This code is taken from https://github.com/sh1r0/caffe-android-lib
# USE_HDF5 := 0
# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
# You should not set this flag if you will be reading LMDBs with any
# possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1
# Uncomment if you're using OpenCV 3
OPENCV_VERSION := 3
# To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++
# CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr
# CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.
# For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.
# For CUDA >= 9.0, comment the *_20 and *_21 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_30,code=sm_30 \
  -gencode arch=compute_35,code=sm_35 \
  -gencode arch=compute_50,code=sm_50 \
  -gencode arch=compute_52,code=sm_52 \
  -gencode arch=compute_60,code=sm_60 \
  -gencode arch=compute_61,code=sm_61 \
  -gencode arch=compute_61,code=compute_61
# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := atlas
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
# BLAS_INCLUDE := /path/to/your/blas
# BLAS_LIB := /path/to/your/blas
# Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib
# This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app
# NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
PYTHON_INCLUDE := /usr/include/python2.7 \
  /usr/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
# ANACONDA_HOME := $(HOME)/anaconda
# PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
  # $(ANACONDA_HOME)/include/python2.7 \
  # $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include
# Uncomment to use Python 3 (default is Python 2)
# PYTHON_LIBRARIES := boost_python3 python3.5m
# PYTHON_INCLUDE := /usr/include/python3.5m \
#                   /usr/local/lib/python3.5/site-packages/numpy/core/include
# We need to be able to find libpythonX.X.so or .dylib.
PYTHON_LIB := /usr/lib
# PYTHON_LIB := $(ANACONDA_HOME)/lib
# Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib
# Uncomment to support layers written in Python (will link against Python libs)
WITH_PYTHON_LAYER := 1
# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial
LIBRARY_DIRS := $(PYTHON_LIB)     /usr/local/lib /usr/lib /usr/lib /usr/lib/x86_64-linux-gnu /usr/lib/x86_64-linux-gnu/hdf5/serial  
# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib
# NCCL acceleration switch (uncomment to build with NCCL)
# https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0)
# USE_NCCL := 1
# Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := 1
# N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute
# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1
# The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := 0
# enable pretty build (comment to see full commands)
Q ?= @

配置Makefile

NVCCFLAGS +=-ccbin=$(CXX) -Xcompiler-fPIC $(COMMON_FLAGS)
替换为:
NVCCFLAGS += -D_FORCE_INLINES -ccbin=$(CXX) -Xcompiler -fPIC $(COMMON_FLAGS)

OpenCV3.0


# 找到这一句,添加 opencv_imgcodecs
LIBRARIES += opencv_core opencv_highgui opencv_imgproc opencv_imgcodecs

编译

sudo make all -j8
sudo make test -j8
sudo make pycaffe -j8
sudo make distribute

配置.bashrc

PYTHONPATH=${HOME}/gh-install/caffe/python:$PYTHONPATH



错误:make: protoc:命令未找到

解决:sudo apt-get install protobuf-c-compiler protobuf-compiler



错误:fatal error: boost/shared_ptr.hpp:

解决:sudo apt-get install --no-install-recommends libboost-all-dev



无法修正错误,因为您要求某些软件包保持现状,就是它们破坏了软件包间的依赖关系

https://blog.csdn.net/quantum7/article/details/83410518



usr/include/stdlib.h:139:8: error: ‘size_t’ does not name a type

include出了问题。这个yiban



make clean之后,再重新编译。

目录
相关文章
|
6月前
|
Ubuntu Linux
计算机基础知识:linux系统怎么安装?
在虚拟机软件中创建一个新的虚拟机,并选择相应操作系统类型和硬盘空间大小等参数。将下载的 ISO 镜像文件加载到虚拟机中。启动虚拟机,进入安装界面,并按照步骤进行安装。安装完成后,可以在虚拟机中使用 Linux 系统。
|
6月前
|
Ubuntu Linux
任何Ubuntu用户都应安装的四大Linux应用程序
当然,这款程序不需要太多介绍。我们面对的是网上最庞大最完整的多媒体中心,由于丰富的插件,我们能够高度细化地定制其每一项功能。这是我们的Linux发行版不可或缺的必备软件。 我们可以通过运行以下命令来轻松安装Kodi:sudo apt install kodi。
|
6月前
|
Ubuntu 物联网 Linux
从零安装一个Linux操作系统几种方法,以Ubuntu18.04为例
一切就绪后,我们就可以安装操作系统了。当系统通过优盘引导起来之后,我们就可以看到跟虚拟机中一样的安装向导了。之后,大家按照虚拟机中的顺序安装即可。 好了,今天主要介绍了Ubuntu Server版操作系统的安装过程,关于如何使用该操作系统,及操作系统更深层的原理,还请关注本号及相关圈子。
|
6月前
|
Ubuntu Linux 网络安全
Linux服务器之Ubuntu的安装与配置
Ubuntu Desktop是目前最成功、最流行的图形界面的Linux发行版;而Ubuntu Server也在服务器端市场占据了较大的份额。今天为大家详细介绍了Ubuntu Server的安装与配置,希望对你能有所帮助。关于VMware、VirtualBox等虚拟化软件的使用,朱哥还会在后续的文章中为大家详细介绍,敬请关注!
|
4月前
|
安全 Linux iOS开发
Nessus Professional 10.10 Auto Installer for RHEL 10, AlmaLinux 10, Rocky Linux 10 - Nessus 自动化安装程序
Nessus Professional 10.10 Auto Installer for RHEL 10, AlmaLinux 10, Rocky Linux 10 - Nessus 自动化安装程序
283 6
Nessus Professional 10.10 Auto Installer for RHEL 10, AlmaLinux 10, Rocky Linux 10 - Nessus 自动化安装程序
|
7月前
|
Linux 网络安全 Apache
针对在Centos/Linux安装Apache过程中出现的常见问题集锦
以上每个问题的解决方案应深入分析错误日志、系统消息和各种配置文件,以找到根本原因并加以解决。务必保持系统和Apache软件包更新到最新版本,以修复已知的bugs和安全漏洞。安装和管理Web服务器是一项需要细致关注和不断学习的任务。随着技术的发展,推荐定期查看官方文档和社区论坛,以保持知识的更新。
302 80
|
4月前
|
消息中间件 Kafka Linux
Linux下安装Kafka 3.9.1
本文介绍Kafka 3.9.1版本的安装与配置,包括通过ZooKeeper或KRaft模式启动Kafka。涵盖环境变量设置、日志路径修改、集群UUID生成、存储格式化及服务启停操作,适用于Linux环境下的部署实践。
511 0
|
6月前
|
网络协议 关系型数据库 Linux
【App Service Linux】在Linux App Service中安装 tcpdump 并抓取网络包
在App Service for Linux环境中,无法像Windows一样直接使用网络排查工具抓包。本文介绍了如何通过TCPDUMP在Linux环境下抓取网络包,包括SSH进入容器、安装tcpdump、执行抓包命令及下载分析文件的完整操作步骤。
302 5
|
6月前
|
弹性计算 安全 Linux
阿里云服务器ECS安装宝塔Linux面板、安装网站(新手图文教程)
本教程详解如何在阿里云服务器上安装宝塔Linux面板,涵盖ECS服务器手动安装步骤,包括系统准备、远程连接、安装命令执行、端口开放及LNMP环境部署,手把手引导用户快速搭建网站环境。