基于SVM-支持向量机对鸢尾花数据进行分类

简介: 基于SVM-支持向量机对鸢尾花数据进行分类

认识SVM——支持向量机


什么是支持向量机


支持向量机(SVM),Supported Vector Machine,基于线性划 分,输出一个最优化的 分隔超平面,该超平面不但能将两类正确分开,且使分类间隔 (margin)最大



所有训练数据点距离最优分类超平面的距离都要大于支持向量距 离此分类超平面的距离

支持向量点到最优分类超平面距离越大越好

注意: SVM的终极目标是求出一个最优的线性分类超平面


SVM的核函数


       当在低维空间中,不能对样本线性可分时,将低维空间中的点 映射到高维空间中,使 它们成为线性可分的,再使用线性划分的原理来判断分类边界。 这里有个问题:如果直接采用这种技术在高维空间进行分类或 回归,可能在高维特征 空间运算时出现"维数灾难"!采用核函数技术(kernel trick)可以有效 地解决这样的问题 直接在低维空间用核函数,其本质是用低维空间中的更复杂的 运算代替高维空间中的普 通内积。


常用的核函数


linear:线性核函数 当训练数据线性可分时,一般用线性核函数,直接实现可分

poly:多项式核函数

rbf:径向基核函数/高斯核函数(Radial Basis Function Kernel) gamma值越小,模型越倾向于欠拟合 gamma值越大,模型越倾向于过拟合

sigmod:sigmod核函数

SVM的"硬间隔"与"软间隔"


硬间隔


当支持向量机(SVM)要求所有样本都必须划分正确,这称为 “硬间隔”(hard margin)。


软间隔


到目前为止,我们一直假定存在一个超平面能将不同类的样本 完全划分开。然而,在现 实任务中往往很难确定合适的核函数使得训练样本线性可分(即使 找到了,也很有可能 是在训练样本上由于过拟合所造成的) 缓解该问题的一个办法是允许支持向量机在一些样本上出错, 这称为"软间隔"(soft margin)。



软间隔支持向量机的数学表达式为(L1正则):



或者(L2正则)



注意: 正则项前面的常数C,C越大说明相应的容错空间越小,若C 取正无穷,则"逼迫"着每个ζ(也称为“松弛变量”)都必须等于 0,此时的Soft Margin SVM就变成了Hard Margin SVM.


实战——SVM对鸢尾花分类

在sklearn中可通过sklearn.svm.SVC使用支持向量机的方式分类 本节课使用SVC对两种鸢尾花的类型进行分类


import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
iris = datasets.load_iris()  # 加载鸢尾花数据集
X = iris.data  # 样本特征
y = iris.target  # 样本标签
X = X[y<2,:2]  # 选择前两种花,为了可视化,只选择前两个特征
y = y[y<2]
plt.scatter(X[y==0,0],X[y==0,1],color='red')
plt.scatter(X[y==1,0],X[y==1,1],color='blue')
plt.show()


from sklearn.model_selection import train_test_split
# 拆分数据集
X_train,X_test,y_train,y_test = train_test_split(X,y,random_state=666)
from sklearn.preprocessing import StandardScaler
# 标准化样本特征
std = StandardScaler()
X_train_std = std.fit_transform(X_train)
X_test_std = std.transform(X_test)
# 使用SVC分类
from sklearn.svm import SVC
# 使用rbf核函数,相应地设置rbf核函数的gamma参数,C是正则化参数
svc = SVC(C=1.0,kernel="rbf",gamma=1.0)
svc.fit(X_train_std,y_train)  # 训练样本集上拟合
svc.score(X_test_std,y_test)   # 测试样本集上测试分类准确率


准确率100%  


目录
相关文章
|
2月前
|
机器学习/深度学习 数据采集
SVM在回归任务中如何应用
SVM在回归任务中如何应用
|
8月前
|
机器学习/深度学习 算法 C++
选择适合的SVM模型进行分类任务
选择SVM模型时需考虑数据线性可分性、问题类型(二分类或多分类)、优化算法(凸优化优势)及性能指标(如准确率、召回率)。数据非线性可分时可使用核技巧。针对多分类,有OVO、OVA和DAG方法。同时,利用交叉验证评估模型泛化能力。
50 4
|
8月前
|
机器学习/深度学习 数据采集 算法
R语言逻辑回归、GAM、LDA、KNN、PCA主成分分析分类预测房价及交叉验证|数据分享
R语言逻辑回归、GAM、LDA、KNN、PCA主成分分析分类预测房价及交叉验证|数据分享
|
机器学习/深度学习 传感器 算法
【SVM回归预测】基于支持向量机的数据回归预测(libsvm)附matlab代码
【SVM回归预测】基于支持向量机的数据回归预测(libsvm)附matlab代码
|
机器学习/深度学习 移动开发 资源调度
机器学习算法(二): 基于鸢尾花数据集的朴素贝叶斯(Naive Bayes)预测分类
机器学习算法(二): 基于鸢尾花数据集的朴素贝叶斯(Naive Bayes)预测分类
|
机器学习/深度学习 Python
【统计学习方法】K近邻对鸢尾花(iris)数据集进行多分类
【统计学习方法】K近邻对鸢尾花(iris)数据集进行多分类
248 0
|
机器学习/深度学习 传感器 数据采集
【SVM分类】基于支持向量机的数据分类预测(libsvm)附matlab代码
【SVM分类】基于支持向量机的数据分类预测(libsvm)附matlab代码
|
机器学习/深度学习 Python
【统计学习方法】线性可分支持向量机对鸢尾花(iris)数据集进行二分类
【统计学习方法】线性可分支持向量机对鸢尾花(iris)数据集进行二分类
476 0
【统计学习方法】线性可分支持向量机对鸢尾花(iris)数据集进行二分类
|
机器学习/深度学习 存储 算法
机器学习算法(四): 基于支持向量机的分类预测(SVM)
机器学习算法(四): 基于支持向量机的分类预测(SVM)
|
机器学习/深度学习 Python
【统计学习方法】感知机对鸢尾花(iris)数据集进行二分类
【统计学习方法】感知机对鸢尾花(iris)数据集进行二分类
759 0
【统计学习方法】感知机对鸢尾花(iris)数据集进行二分类