【读书笔记】Algorithms for Decision Making(14)

简介: 本部分将简单游戏扩展到具有多个状态的连续上下文。马尔可夫博弈可以看作是多个具有自己奖励函数的智能体的马尔可夫决策过程。

五、多智能体系统(3)

本部分将简单游戏扩展到具有多个状态的连续上下文。马尔可夫博弈可以看作是多个具有自己奖励函数的智能体的马尔可夫决策过程。


3. 状态不确定

3.1 Partially Observable Markov Games

POMG可以看作是MG到部分可观测性的扩展,也可以看作是POMDP到多个代理的扩展。

struct POMG
    γ # discount factor
    ℐ # agents
    𝒮 # state space
    𝒜 # joint action space
    𝒪 # joint observation space
    T # transition function
    O # joint observation function
    R # joint reward function
end

3.2 策略进化

3.2.1 基于树的条件规划的策略

function lookahead(𝒫::POMG, U, s, a)
    𝒮, 𝒪, T, O, R, γ = 𝒫.𝒮, joint(𝒫.𝒪), 𝒫.T, 𝒫.O, 𝒫.R, 𝒫.γ
    u′ = sum(T(s,a,s′)*sum(O(a,s′,o)*U(o,s′) for o in 𝒪) for s′ in 𝒮)
    return R(s,a) + γ*u′
end

function evaluate_plan(𝒫::POMG, π, s)
    a = Tuple(πi() for πi in π)
    U(o,s′) = evaluate_plan(𝒫, [πi(oi) for (πi, oi) in zip(π,o)], s′)
    return isempty(first(π).subplans) ? 𝒫.R(s,a) : lookahead(𝒫, U, s, a)
end

function utility(𝒫::POMG, b, π)
    u = [evaluate_plan(𝒫, π, s) for s in 𝒫.𝒮]
    return sum(bs * us for (bs, us) in zip(b, u))
end

3.2.2 基于图的控制器的策略

在这里插入图片描述

3.3 Nash 均衡

struct POMGNashEquilibrium
    b # initial belief
    d # depth of conditional plans
end

function create_conditional_plans(𝒫, d)
    ℐ, 𝒜, 𝒪 = 𝒫.ℐ, 𝒫.𝒜, 𝒫.𝒪
    Π = [[ConditionalPlan(ai) for ai in 𝒜[i]] for i in ℐ]
    for t in 1:d
        Π = expand_conditional_plans(𝒫, Π)
    end
    return Π
end

function expand_conditional_plans(𝒫, Π)
    ℐ, 𝒜, 𝒪 = 𝒫.ℐ, 𝒫.𝒜, 𝒫.𝒪
    return [[ConditionalPlan(ai, Dict(oi => πi for oi in 𝒪[i]))
    for πi in Π[i] for ai in 𝒜[i]] for i in ℐ]
end

function solve(M::POMGNashEquilibrium, 𝒫::POMG)
    ℐ, γ, b, d = 𝒫.ℐ, 𝒫.γ, M.b, M.d
    Π = create_conditional_plans(𝒫, d)
    U = Dict(π => utility(𝒫, b, π) for π in joint(Π))
    𝒢 = SimpleGame(γ, ℐ, Π, π -> U[π])
    π = solve(NashEquilibrium(), 𝒢)
    return Tuple(argmax(πi.p) for πi in π)
end

3.4 动态规划

struct POMGDynamicProgramming
    b # initial belief
    d # depth of conditional plans
end

function solve(M::POMGDynamicProgramming, 𝒫::POMG)
    ℐ, 𝒮, 𝒜, R, γ, b, d = 𝒫.ℐ, 𝒫.𝒮, 𝒫.𝒜, 𝒫.R, 𝒫.γ, M.b, M.d
    Π = [[ConditionalPlan(ai) for ai in 𝒜[i]] for i in ℐ]
    for t in 1:d
        Π = expand_conditional_plans(𝒫, Π)
        prune_dominated!(Π, 𝒫)
    end
    𝒢 = SimpleGame(γ, ℐ, Π, π -> utility(𝒫, b, π))
    π = solve(NashEquilibrium(), 𝒢)
    return Tuple(argmax(πi.p) for πi in π)
end

function prune_dominated!(Π, 𝒫::POMG)
    done = false
    while !done
        done = true
        for i in shuffle(𝒫.ℐ)
            for πi in shuffle(Π[i])
                if length(Π[i]) > 1 && is_dominated(𝒫, Π, i, πi)
                    filter!(πi′ -> πi′ ≠ πi, Π[i])
                    done = false
                    break
                end
            end
        end
    end
end

function is_dominated(𝒫::POMG, Π, i, πi)
    ℐ, 𝒮 = 𝒫.ℐ, 𝒫.𝒮
    jointΠnoti = joint([Π[j] for j in ℐ if j ≠ i])
    π(πi′, πnoti) = [j==i ? πi′ : πnoti[j>i ? j-1 : j] for j in ℐ]
    Ui = Dict((πi′, πnoti, s) => evaluate_plan(𝒫, π(πi′, πnoti), s)[i]
        for πi′ in Π[i], πnoti in jointΠnoti, s in 𝒮)
    model = Model(Ipopt.Optimizer)
    @variable(model, δ)
    @variable(model, b[jointΠnoti, 𝒮] ≥ 0)        
    @objective(model, Max, δ)
    @constraint(model, [πi′=Π[i]],
        sum(b[πnoti, s] * (Ui[πi′, πnoti, s] - Ui[πi, πnoti, s])
        for πnoti in jointΠnoti for s in 𝒮) ≥ δ)
    @constraint(model, sum(b) == 1)
    optimize!(model)
    return value(δ) ≥ 0
end

4. Decentralized Partially Observable Markov Decision Processes

Dec-POMDP是所有智能体都共享相同目标的POMG。

struct DecPOMDP
    γ # discount factor
    ℐ # agents
    𝒮 # state space
    𝒜 # joint action space
    𝒪 # joint observation space
    T # transition function
    O # joint observation function
    R # reward function
end

4.1 Subclass

在这里插入图片描述

4.2 算法

4.2.1 动态规划

struct DecPOMDPDynamicProgramming
    b # initial belief
    d # depth of conditional plans
end

function solve(M::DecPOMDPDynamicProgramming, 𝒫::DecPOMDP)
    ℐ, 𝒮, 𝒜, 𝒪, T, O, R, γ = 𝒫.ℐ, 𝒫.𝒮, 𝒫.𝒜, 𝒫.𝒪, 𝒫.T, 𝒫.O, 𝒫.R, 𝒫.γ
    R′(s, a) = [R(s, a) for i in ℐ]
    𝒫′ = POMG(γ, ℐ, 𝒮, 𝒜, 𝒪, T, O, R′)
    M′ = POMGDynamicProgramming(M.b, M.d)
    return solve(M′, 𝒫′)
end

4.2.2 迭代最佳响应

struct DecPOMDPIteratedBestResponse
    b # initial belief
    d # depth of conditional plans
    k_max # number of iterations
end

function solve(M::DecPOMDPIteratedBestResponse, 𝒫::DecPOMDP)
    ℐ, 𝒮, 𝒜, 𝒪, T, O, R, γ = 𝒫.ℐ, 𝒫.𝒮, 𝒫.𝒜, 𝒫.𝒪, 𝒫.T, 𝒫.O, 𝒫.R, 𝒫.γ
    b, d, k_max = M.b, M.d, M.k_max
    R′(s, a) = [R(s, a) for i in ℐ]
    𝒫′ = POMG(γ, ℐ, 𝒮, 𝒜, 𝒪, T, O, R′)
    Π = create_conditional_plans(𝒫, d)
    π = [rand(Π[i]) for i in ℐ]
    for k in 1:k_max
        for i in shuffle(ℐ)
            π′(πi) = Tuple(j == i ? πi : π[j] for j in ℐ)
            Ui(πi) = utility(𝒫′, b, π′(πi))[i]
            π[i] = argmax(Ui, Π[i])
        end
    end
    return Tuple(π)
end

4.2.3 Heuristic Search

struct DecPOMDPHeuristicSearch
    b # initial belief
    d # depth of conditional plans
    π_max # number of policies
end

function solve(M::DecPOMDPHeuristicSearch, 𝒫::DecPOMDP)
    ℐ, 𝒮, 𝒜, 𝒪, T, O, R, γ = 𝒫.ℐ, 𝒫.𝒮, 𝒫.𝒜, 𝒫.𝒪, 𝒫.T, 𝒫.O, 𝒫.R, 𝒫.γ
    b, d, π_max = M.b, M.d, M.π_max
    R′(s, a) = [R(s, a) for i in ℐ]
    𝒫′ = POMG(γ, ℐ, 𝒮, 𝒜, 𝒪, T, O, R′)
    Π = [[ConditionalPlan(ai) for ai in 𝒜[i]] for i in ℐ]
    for t in 1:d
        allΠ = expand_conditional_plans(𝒫, Π)
        Π = [[] for i in ℐ]
        for z in 1:π_max
            b′ = explore(M, 𝒫, t)
            π = argmax(π -> first(utility(𝒫′, b′, π)), joint(allΠ))
            for i in ℐ
                push!(Π[i], π[i])
                filter!(πi -> πi != π[i], allΠ[i])
            end
        end
    end
    return argmax(π -> first(utility(𝒫′, b, π)), joint(Π))
end

function explore(M::DecPOMDPHeuristicSearch, 𝒫::DecPOMDP, t)
    ℐ, 𝒮, 𝒜, 𝒪, T, O, R, γ = 𝒫.ℐ, 𝒫.𝒮, 𝒫.𝒜, 𝒫.𝒪, 𝒫.T, 𝒫.O, 𝒫.R, 𝒫.γ
    b = copy(M.b)
    b′ = similar(b)
    s = rand(SetCategorical(𝒮, b))
    for τ in 1:t
        a = Tuple(rand(𝒜i) for 𝒜i in 𝒜)
        s′ = rand(SetCategorical(𝒮, [T(s,a,s′) for s′ in 𝒮]))
        o = rand(SetCategorical(joint(𝒪), [O(a,s′,o) for o in joint(𝒪)]))
        for (i′, s′) in enumerate(𝒮)
            po = O(a, s′, o)
            b′[i′] = po*sum(T(s,a,s′)*b[i] for (i,s) in enumerate(𝒮))
        end
        normalize!(b′, 1)
        b, s = b′, s′
    end
    return b′
end

4.2.4 非线性规划

struct DecPOMDPNonlinearProgramming
    b # initial belief
    ℓ # number of nodes for each agent
end

function tensorform(𝒫::DecPOMDP)
    ℐ, 𝒮, 𝒜, 𝒪, R, T, O = 𝒫.ℐ, 𝒫.𝒮, 𝒫.𝒜, 𝒫.𝒪, 𝒫.R, 𝒫.T, 𝒫.O
    ℐ′ = eachindex(ℐ)
    𝒮′ = eachindex(𝒮)
    𝒜′ = [eachindex(𝒜i) for 𝒜i in 𝒜]
    𝒪′ = [eachindex(𝒪i) for 𝒪i in 𝒪]
    R′ = [R(s,a) for s in 𝒮, a in joint(𝒜)]
    T′ = [T(s,a,s′) for s in 𝒮, a in joint(𝒜), s′ in 𝒮]
    O′ = [O(a,s′,o) for a in joint(𝒜), s′ in 𝒮, o in joint(𝒪)]
    return ℐ′, 𝒮′, 𝒜′, 𝒪′, R′, T′, O′
end

function solve(M::DecPOMDPNonlinearProgramming, 𝒫::DecPOMDP)
    𝒫, γ, b = 𝒫, 𝒫.γ, M.b
    ℐ, 𝒮, 𝒜, 𝒪, R, T, O = tensorform(𝒫)
    X = [collect(1:M.ℓ) for i in ℐ]
    jointX, joint𝒜, joint𝒪 = joint(X), joint(𝒜), joint(𝒪)
    x1 = jointX[1]
    model = Model(Ipopt.Optimizer)
    @variable(model, U[jointX,𝒮])
    @variable(model, ψ[i=ℐ,X[i],𝒜[i]] ≥ 0)
    @variable(model, η[i=ℐ,X[i],𝒜[i],𝒪[i],X[i]] ≥ 0)
    @objective(model, Max, b⋅U[x1,:])
    @NLconstraint(model, [x=jointX,s=𝒮],
        U[x,s] == (sum(prod(ψ[i,x[i],a[i]] for i in ℐ)
            *(R[s,y] + γ*sum(T[s,y,s′]*sum(O[y,s′,z]
                *sum(prod(η[i,x[i],a[i],o[i],x′[i]] for i in ℐ)
                    *U[x′,s′] for x′ in jointX)
                for (z, o) in enumerate(joint𝒪)) for s′ in 𝒮))
            for (y, a) in enumerate(joint𝒜))))
    @constraint(model, [i=ℐ,xi=X[i]], sum(ψ[i,xi,ai] for ai in 𝒜[i]) == 1)
    @constraint(model, [i=ℐ,xi=X[i],ai=𝒜[i],oi=𝒪[i]], 
        sum(η[i,xi,ai,oi,xi′] for xi′ in X[i]) == 1)
    optimize!(model)
    ψ′, η′ = value.(ψ), value.(η)
    return [ControllerPolicy(𝒫, X[i],
        Dict((xi,𝒫.𝒜[i][ai]) => ψ′[i,xi,ai] for xi in X[i], ai in 𝒜[i]),
        Dict((xi,𝒫.𝒜[i][ai],𝒫.𝒪[i][oi],xi′) => η′[i,xi,ai,oi,xi′] 
            for xi in X[i], ai in 𝒜[i], oi in 𝒪[i], xi′ in X[i])) for i in ℐ]
end

总结

最后一部分可以看作是一个全文总结的案例,也可以看作是全文内容的升华(从单智能体到多智能体)。

相关文章
|
数据库
【latex】在Overleaf的IEEE会议模板中,快速插入参考文献
【latex】在Overleaf的IEEE会议模板中,快速插入参考文献
3063 1
|
存储 Java 关系型数据库
学成在线笔记+踩坑(0)——面试问题
介绍你的项目、项目难点、表是怎么设计的?、断点续传是怎么做的?、如何保证任务不重复执行? 、任务幂等性如何保证、分布式锁的三种实现方式
学成在线笔记+踩坑(0)——面试问题
|
10月前
|
存储 关系型数据库 MySQL
从新手到高手:彻底掌握MySQL表死锁
通过本文的介绍,希望你能深入理解MySQL表死锁的概念、原因、检测方法及解决方案,并在实际开发中灵活应用这些知识,提升系统的稳定性和性能。
879 9
|
12月前
|
小程序 前端开发 开发者
小程序的页面如何布局?
【10月更文挑战第16天】小程序的页面如何布局?
727 1
|
并行计算 PyTorch 算法框架/工具
【Pytorch】查看GPU是否可用
本文提供了使用PyTorch检查GPU是否可用的方法,包括查看PyTorch版本、编译时使用的CUDA版本以及当前CUDA是否可用于PyTorch。
1419 2
|
Arthas 存储 Java
JVM内存问题之Linux使用ptmalloc2导致的JNI内存溢出问题如何解决
JVM内存问题之Linux使用ptmalloc2导致的JNI内存溢出问题如何解决
200 3
|
JSON 数据格式
FeignClient【问题】Method threw ‘feign.codec.DecodeException‘ exception.也许是最简单的解决方法
FeignClient【问题】Method threw ‘feign.codec.DecodeException‘ exception.也许是最简单的解决方法
1015 0
|
前端开发 计算机视觉
Building wheel for opencv-python (pyproject.toml) ,安装命令增加 --verbose 参数
Building wheel for opencv-python (pyproject.toml) ,安装命令增加 --verbose 参数
699 2
【Vscode+Latex】Mac 系统Vscode的LaTeX中插入参考文献
在Mac系统下的VSCode环境中配置LaTeX工作流以便插入和引用参考文献的详细步骤。
824 0
|
Ubuntu 计算机视觉
【操作技巧】如何给Jetson Orin Nano的ubuntu port换镜像源
【操作技巧】如何给Jetson Orin Nano的ubuntu port换镜像源
621 0