约束冲突怎么办?没关系,MindOpt会出手的!

简介: 在对实际应用中的优化问题进行建模求解的过程中,往往会遇到问题不可行的情况。而不可行问题必然是由某些约束互相之间冲突导致的,如何分析问题的不可行性并识别出导致冲突的关键约束成为求解器应用的重要一环。这类导致问题不可行的最小约束子集被称为不可约不可行系统 (IIS, irreduciable infeasible system)。

MindOpt 设计了用来计算 IIS 的 API,用户可以通过利用该 API 来对不可行问题进行分析。再依据此对 IIS 中的约束进行修正或移除,可以使得优化问题变得可行,以便于更好地对实际问题进行分析建模和获得最优决策。

本文将讲述在Python环境遇到IIS问题是如何分析,让问题变的可行。



下载安装

用户可以点这里下载安装MindOpt优化求解器

开通算法服务控制台(免费的)

MindOpt的更多信息官网


举例

我们在使用画图软件去画一个正方形,我们告诉系统长是5,但又告诉高是6,我们都知道这是不可能的。这里就存在约束,正方形是四边相等的约束,但我们又告诉他是6,这个时候系统就无法判断到底是边等于5还是等于6或者是不约束各边相等,那么他就会视为冲突。说明数据不对或者已知条件太多。解决办法就是查出多余的条件,像删除等于5或者等于6 各边相等。


入门算例

在线性规划问题中,IIS 可能并不是唯一的。若存在多个 IIS,则需要对优化问题进行多次调整,才能使其变得可行。例如:

image.png

在这个例子中,我们很容易知道 为一组 IIS, 为一组 IIS。在同时移除 中的任意一条约束以及 中的任意一条约束后,该问题将变得可行。


进阶算例

我们将通过一个更加复杂的例子,来展示如何在 MindOpt 中使用约束不可行性分析来获取 IIS。考虑如下的不可行约束系统:

image.png

其中,前面三组约束构成一组IIS,而第四个约束和变量上下界则构成另外一组IIS。

#注意:MindOpt 目前采用过滤算法来寻找IIS。过滤算法虽然能在短时间找出一组IIS,但无法保证IIS的规模是所有IIS组合中最小的。此外,若使用者对约束顺序做调整,则 MindOpt 也可能会产生不同的IIS。

#注意:实际操作上,我们建议使用者修复IIS中的冲突后,再将修改后的模型输入至求解IIS的API,并修复下一个IIS;依此直至所有的冲突都得以修复。


代码实现

下面是完整的例子,可复制存为test_IIS.py文件。

从开头到第三步【model.display_results()】我们使用的是和前文一样的建模方法

from mindoptpy import *
if __name__ == "__main__":
    MDO_INFINITY = MdoModel.get_infinity()
    # Step 1. 创建模型并更改参数。
    model = MdoModel()
    # 关闭预求解器,这样求解器就不会以 MDO_INF_OR_UBD 状态终止。
    model.set_int_param(MDO_INT_PARAM.PRESOLVE, 0)
    model.set_int_param(MDO_INT_PARAM.METHOD, 1)
    try:
        # Step 2. 输入模型。
        # 改为最小化问题。
        model.set_int_attr(MDO_INT_ATTR.MIN_SENSE, 1)
        # 添加变量
        x = []
        x.append(model.add_var(0.0, MDO_INFINITY, 0.0, None, "x0", False))
        x.append(model.add_var(0.0, MDO_INFINITY, 0.0, None, "x1", False))
        x.append(model.add_var(0.0, MDO_INFINITY, 0.0, None, "x2", False))
        x.append(model.add_var(5.0, MDO_INFINITY, 0.0, None, "x3", False))
        x.append(model.add_var(0.0,          2.0, 0.0, None, "x4", False))
        # 添加约束。
        conss = []
        conss.append(model.add_cons(-0.5 * x[0]       + x[1]                     >= 0.5,  "c0"))
        conss.append(model.add_cons( 2.0 * x[0]       - x[1]                     >= 3.0,  "c1"))
        conss.append(model.add_cons( 3.0 * x[0]       + x[1]                     <= 6.0,  "c2"))
        conss.append(model.add_cons(                          3.0 * x[3] - x[4]  <= 2.0,  "c3"))
        conss.append(model.add_cons(       x[0]                          + x[4]  <= 10.0, "c4"))
        conss.append(model.add_cons(       x[0] + 2.0 * x[1]      + x[3]         <= 14.0, "c5"))
        conss.append(model.add_cons(       x[1] +                   x[3]         >= 1.0,  "c6"))        
        # Step 3. 解决问题并填充结果。
        model.solve_prob()
        model.display_results()
        #接下来,当优化问题不可行时,使用 mindoptpy.MdoModel.compute_iis() 
        #获取不可约不可行子系统的行列坐标,并打印对应的约束名与变量名
        status_code, status_msg = model.get_status()
        if status_msg == "INFEASIBLE":
            print("Optimizer terminated with an MDO_INFEASIBLE status (code {0}).".format(status_code))
            print("Compute IIS.")
            idx_rows, idx_cols = model.compute_iis()
            print("Computed IIS has {0} rows and {1} columns.".format(len(idx_rows), len(idx_cols)))
            print("Populating IIS.")
            for i in idx_rows:
                print("Constraint: {0}".format(conss[i].get_str_attr("RowName")))
            for j in idx_cols:
                print("Variable: {0}".format(x[j].get_str_attr("ColName")))
        else:
            print("Optimizer terminated with a(n) {0} status (code {1}).".format(status_msg, status_code))
    except MdoError as e:
        print("Received Mindopt exception.")
        print(" - Code          : {}".format(e.code))
        print(" - Reason        : {}".format(e.message))
    except Exception as e:
        print("Received exception.")
        print(" - Explanation   : {}".format(e))
    finally:
    # Step 4. 释放模型。
    model.free_mdl()

然后运行代码,如命令行中执行 python test_IIS.py 文件后,得到求解的结果如下所示,#号里面是我添加的注释。

Model summary.
 - Num. variables     : 5
 - Num. constraints   : 7
 - Num. nonzeros      : 15
 - Bound range        : [5.0e-01,1.4e+01]
 - Objective range    : [0.0e+00,0.0e+00]
 - Matrix range       : [5.0e-01,3.0e+00]
Simplex method started.
    Iteration       Objective       Dual Inf.     Primal Inf.     Time
            0     0.00000e+00      0.0000e+00      1.6500e+01     0.01s    
            1     0.00000e+00      0.0000e+00      1.7500e+01     0.01s    
Simplex method terminated. Time : 0.003s
Optimizer summary.                         #优化器摘要
 - Optimizer used     : Simplex method     #单纯形法
 - Optimizer status   : INFEASIBLE         #优化状态不可行
 - Total time         : 0.008s
Solution not available.                    #解决方案不可用。
Optimizer terminated with an MDO_INFEASIBLE status (code 2).
Compute IIS.                               #然后开始计算IIS
IIS started.
IIS terminated. Time : 0.010s
A subsystem with 1 rows (out of 7 rows) that contains an IIS was found.
                                #找到了一个包含IIS的1行 (7行中) 的子系统。
Computed IIS has 1 rows and 0 columns.
Populating IIS.
Constraint: c3                            #可以对C3的约束进行修正或移除

联系我们

钉钉群号:32451444

邮箱地址:solver.damo@list.alibaba-inc.com

更多更新通知:https://solver.damo.alibaba.com


相关文章
|
6月前
|
编译器 API C++
c++ 新特性 概念和约束 “无规矩 难成方圆”
c++ 新特性 概念和约束 “无规矩 难成方圆”
|
敏捷开发 前端开发 开发者
想要成为软件开发中的王者,需要明白的 21 条准则
想要成为软件开发中的王者,需要明白的 21 条准则
|
测试技术
解决Bug应有的心态和解决方法的一些思路、方法和心得
永远要相信程序是不会骗你的,是自己在处理理逻辑中出问题,而在特定的环境中才会出现或者是自己压根就想不到情况下出现。 前几天在处理一个接口任务时,在测试环境跑是一点都没有,但在正式环境却没有将数据拉下来。没有报任何错误,一度怀疑、抱怨! 还好最后找到问题解决了!
82 0
|
6月前
|
搜索推荐
代码分享|GPL平台没有基因注释什么办?别慌,基因ID注释万能公式!
本文介绍了处理无基因注释的GEO数据集的方法。当遇到GPL平台无基因注释时,可以通过以下步骤解决:1) 查看数据集补充文件中是否已有注释矩阵;2) 使用搜索引擎或官网查找相关资源;3) 如数据集较新,尝试联系平台官方;4) 利用已有经验进行转换。文中通过多个GSE示例详细解释了如何处理不同情况,并提醒读者注意检查数据集中可能隐藏的注释信息。作者提供了转换ID的代码,并在公众号“多线程核糖体”分享了相关资源。
593 0
|
算法 芯片
怎样解决电感啸叫声?
怎样解决电感啸叫声?
178 0
|
存储 Java 程序员
BeanDifinition(加几行代码,可以产出让队友几天也找不出的Bug)
前言 文本已收录至我的GitHub仓库,欢迎Star:github.com/bin39232820… 种一棵树最好的时间是十年前,其次是现在
190 0
|
域名解析 网络协议 网络架构
一篇文章,只用看三遍,终生不忘网络分层!
一篇文章,只用看三遍,终生不忘网络分层!
160 0
一篇文章,只用看三遍,终生不忘网络分层!
|
域名解析 网络协议 网络架构
一篇文章,只用看三遍,终生不忘网络分层
一篇文章,只用看三遍,终生不忘网络分层
141 0
一篇文章,只用看三遍,终生不忘网络分层
|
缓存 架构师 程序员
给正在努力的您几条建议(附开源代码)
给正在努力的您几条建议(附开源代码)
109 0
|
设计模式 Java 编译器
恕我直言,我怀疑你没怎么用过枚举
我们是否一样? 估计很多小伙伴(也包括我自己)都有这种情况,在自学Java语言看书时,关于枚举enum这一块的知识点可能都有点 “轻敌” ,觉得这块内容非常简单,一带而过,而且在实际写代码过程中也不注意运用。 是的,我也是这样!直到有一天我提的代码审核没过,被技术总监一顿批,我才重新拿起了《Java编程思想》,把枚举这块的知识点重新又审视了一遍。 为什么需要枚举 常量定义它不香吗?为啥非得用枚举? 举个栗子,就以B站上传视频为例,视频一般有三个状态:草稿、审核和发布,我们可以将其定义为静态常量: public class VideoStatus { public st
137 0