2w字长篇 手把手带你彻底搞懂二叉树(一)

简介: 2w字长篇 手把手带你彻底搞懂二叉树(一)

首先我们先来介绍下树

树形结构

基本概念

2.png

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看 起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。它具有以下的特点:


有一个特殊的节点,称为根节点,根节点没有前驱节点

除根节点外,其余节点被分成M(M > 0)个互不相交的集合T1、T2、…、Tm,其中每一个集合 Ti (1 <= i <= m),又是一棵与树类似的子树。每棵子树的根节点有且只有一个前驱,可以有0个或多个后继树

是递归定义的

2.png


特殊概念(重要)

节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6

树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6

叶子节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I…等节点为叶节点

双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点

孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点

根结点:一棵树中,没有双亲结点的结点;如上图:A

节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;

树的高度或深度:树中节点的最大层次; 如上图:树的高度为4

2.png


高度:高度是指从该节点到叶子节点的所经过的节点个数


例如A的高度为4(A—>P经历了四个节点),G的高度为2(G—>N)经历了两个节点)


深度:深度是指从该节点到根节点所经过的节点个数


例如B的深度为2(B—>A经历了2个节点)


树的以下概念只需了解,在看书时只要知道是什么意思即可:

非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G…等节点为分支节点兄弟节点:具有相同父节点的节点互称为

兄弟节点; 如上图:B、C是兄弟节点

堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点

节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先

子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙

森林:由m(m>=0)棵互不相交的树的集合称为森林


树的表示形式(了解)

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,实际中树有很多种表示方式,如:双亲表示法, 孩子表示法、孩子兄弟表示法等等。我们这里就简单的了解其中最常用的孩子兄弟表示法。

class Node {
int value;        // 树中存储的数据
Node firstChild;  // 第一个孩子引用
Node nextBrother; // 下一个兄弟引用
}

孩子兄弟表示法示意图:

2.png


树的应用

文件系统管理(目录和文件)


2.png


二叉树(重点)

2.png


二叉树的概念

一棵二叉树是结点的一个有限集合,该集合或者为空,或者是由一个根节点加上两棵别称为左子树和右子树的二叉 树组成。

二叉树的特点:

1.每个结点最多有两棵子树,即二叉树不存在度大于 2 的结点。

2.二叉树的子树有左右之分,其子树的次序不能颠倒,因此二叉树是有序树。


二叉树的基本形态

2.png

上图给出了几种特殊的二叉树形态,从左往右依次是:空树、只有根节点的二叉树、节点只有左子树、节点只有右 子树、节点的左右子树均存在,一般二叉树都是由上述基本形态结合而形成的。


两种特殊的二叉树

1.满二叉树: 一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是 2 k 2^{k}2

k

-1,则它就是满二叉树。满二叉树其实是一种特殊的完全二叉树,我们后面学习的堆,其实就是完全二叉树

2.完全二叉树: 完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n 个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一 一对应时称之为完全 二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。

2.png


二叉树的性质(一般用于填空和选择题)

1.若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有2 i − 1 2^{i-1}2

i−1

(i>0)个结点

2.若规定只有根节点的二叉树的深度为1,则深度为K的二叉树的最大结点数是2 k 2^{k}2

k

-1(k>=0)

最大节点数就是放满的情况下,所以一个节点的深度为3,那么这棵二叉树最多可以放7个节点,也就是层数为3的满二叉树.

3.对任何一棵二叉树, 如果其叶子结点个数为 n0, 度为2的非叶子结点个数为 n2,则有n0=n2+1

4.具有n个结点的完全二叉树的深度k为


k向上取整

5.对于具有n个结点的完全二叉树,如果按照从上至下从左至右的顺序对所有节点从0开始编号,则对于序号为i 的结点有:

(1):


若i>0,则双亲序号为:(i-1)/2;

若i=0,此时i为根节点编号,根节点是无双亲节点的


上述需要注意的是:此时的编号是从i=0的时候开始编号的,也就是说根节点此时的编号为0,所以双亲序号为(i-1)/2;而当i=1的时候,此时根节点的编号为1,那么双亲序号为i/2,来看一道题目:


将一颗有 100 个结点的完全二叉树从根这一层开始,每一层从左到右依次对结点进行编号,根节点编号为 1 ,则编号为 98的节点的父节点编号为?

答:很多同学在做这道题目的时候都会直接套(98-1)/2 = 48,但是这样算的话是错误的,原因是我们此时根节点编号是从1开始的,并不是从0开始的,所以此时就直接98/2=49即可,所以父节点的编号为49.


(2):


若2i+1

若2i+2

2.png


练习题

假设一棵完全二叉树中总共有1000个节点,则该二叉树中 500个叶子节点, 500个非叶子节点,1 个节点只有左孩子, 0个只有右孩子。


二叉树的存储

二叉树的存储结构分为:


顺序存储(顺序存储多用于完全二叉树)

类似于链表的链式存储(适用于所有二叉树类型的存储)

顺序存储我们在下节介绍,我们首先来介绍链式存储


链式存储法

二叉树的链式存储是通过一个一个的节点引用起来的,常见的表示方式有二叉和三叉表示方式,具体如下:

2.png


孩子双亲表示法后序在平衡树位置介绍,本文采用孩子表示法来构建二叉树。


二叉表示法图示:也就是我们的孩子表示法

2.png

三叉表示法图示:也就是我们的孩子双亲表示法

2.png





相关文章
|
6月前
|
算法
【数据结构与算法 经典例题】反转链表(图文详解)
【数据结构与算法 经典例题】反转链表(图文详解)
|
7月前
|
算法
数据结构与算法⑤(第二章OJ题,上)前五道链表面试题(上)
数据结构与算法⑤(第二章OJ题,上)前五道链表面试题
30 0
|
存储 人工智能 算法
2022 数据结构与算法《王道》学习笔记 (十)串 KMP算法 串的总结 课后习题笔记
2022 数据结构与算法《王道》学习笔记 (十)串 KMP算法 串的总结 课后习题笔记
|
存储 C语言 C++
C语言指针笔试真题整理(8道)(下)
C语言指针笔试真题整理(8道)(下)
101 0
|
存储 C语言
C语言指针笔试真题整理(8道)(上)
C语言指针笔试真题整理(8道)
82 0
|
缓存 算法 C语言
【数据结构与算法篇】栈与队列(详解)附加Leetcode经典笔试题
【数据结构与算法篇】栈与队列(详解)附加Leetcode经典笔试题
62 0
【初阶C语言】有关的经典题型内含数组及递归函数题型讲解(入门适用)(二)
【初阶C语言】有关的经典题型内含数组及递归函数题型讲解(入门适用)(二)
【初阶C语言】有关的经典题型内含数组及递归函数题型讲解(入门适用)(一)
【初阶C语言】有关的经典题型内含数组及递归函数题型讲解(入门适用)(一)
|
存储 测试技术 索引
【数据结构初阶】(栈和队列)图文详解四道oj+三道easy概念题
【数据结构初阶】(栈和队列)图文详解四道oj+三道easy概念题
|
C语言 索引
C语言中链表经典面试题目
环形链表 环形链表 II