五、join 原理
join 体现的是【保护性暂停】模式,请参考之
- 保护性暂停:一个线程等待另一个线程的结果。
- join:一个线程等待另一个线程的结束。
六、park & unpark原理
每个线程都有自己的一个 Parker 对象,由三部分组成_counter
, _cond
和 _mutex
打个比喻,线程就像一个旅人。
Parker 就像他随身携带的背包,条件变量就好比背包中的帐篷。_counter 就好比背包中的备用干粮(0 为耗尽,1 为充足)
调用 park 就是要看需不需要停下来歇息
如果备用干粮耗尽,那么钻进帐篷歇息
如果备用干粮充足,那么不需停留,继续前进
调用 unpark,就好比令干粮充足
如果这时线程还在帐篷,就唤醒让他继续前进
如果这时线程还在运行,那么下次他调用 park 时,仅是消耗掉备用干粮,不需停留继续前进
因为背包空间有限,多次调用 unpark 仅会补充一份备用干粮
- 当前线程调用 Unsafe.park() 方法
- 检查 _counter ,本情况为 0,这时,获得 _mutex 互斥锁
- 线程进入阻塞队列, _cond 条件变量变为阻塞
- 设置 _counter = 0
- 调用 Unsafe.unpark(Thread_0) 方法,设置 _counter 为 1
- 唤醒 _cond 条件变量中的 Thread_0
- Thread_0 恢复运行
- 设置 _counter 为 0
- 调用 Unsafe.unpark(Thread_0) 方法,设置 _counter 为 1
- 当前线程调用 Unsafe.park() 方法
- 检查 _counter ,本情况为 1,这时线程无需阻塞,继续运行
- 设置 _counter 为 0
七、指令级并行原理
1.名词
Clock Cycle Time
主频的概念大家接触的比较多,而 CPU 的 Clock Cycle Time(时钟周期时间),等于主频的倒数,意思是 CPU 能够识别的最小时间单位,比如说 4G 主频的 CPU 的 Clock Cycle Time 就是 0.25 ns,作为对比,我们墙上挂钟的Cycle Time 是 1s
例如,运行一条加法指令一般需要一个时钟周期时间
CPI
有的指令需要更多的时钟周期时间,所以引出了 CPI (Cycles Per Instruction)指令平均时钟周期数
IPC
IPC(Instruction Per Clock Cycle) 即 CPI 的倒数,表示每个时钟周期能够运行的指令数
CPU 执行时间
程序的 CPU 执行时间,即我们前面提到的 user + system 时间,可以用下面的公式来表示
程序 CPU 执行时间 = 指令数 * CPI * Clock Cycle Time
2.鱼罐头的故事
加工一条鱼需要 50 分钟,只能一条鱼、一条鱼顺序加工…
可以将每个鱼罐头的加工流程细分为 5 个步骤:
- 去鳞清洗 10分钟
- 蒸煮沥水 10分钟
- 加注汤料 10分钟
- 杀菌出锅 10分钟
- 真空封罐 10分钟
即使只有一个工人,最理想的情况是:他能够在 10 分钟内同时做好这 5 件事,因为对第一条鱼的真空装罐,不会影响对第二条鱼的杀菌出锅…
3.指令重排序优化
事实上,现代处理器会设计为一个时钟周期完成一条执行时间最长的 CPU 指令。为什么这么做呢?可以想到指令还可以再划分成一个个更小的阶段,例如,每条指令都可以分为: 取指令 - 指令译码 - 执行指令 - 内存访问 - 数据写回 这 5 个阶段
术语参考:
instruction fetch (IF)
instruction decode (ID)
execute (EX)
memory access (MEM)
register write back (WB)
在不改变程序结果的前提下,这些指令的各个阶段可以通过重排序和组合来实现指令级并行,这一技术在 80’s 中叶到 90’s 中叶占据了计算架构的重要地位。
指令重排的前提是,重排指令不能影响结果,例如
// 可以重排的例子 int a = 10; // 指令1 int b = 20; // 指令2 System.out.println( a + b ); // 不能重排的例子 int a = 10; // 指令1 int b = a - 5; // 指令2
4.支持流水线的处理器
现代 CPU 支持多级指令流水线,例如支持同时执行 取指令 - 指令译码 - 执行指令 - 内存访问 - 数据写回 的处理器,就可以称之为五级指令流水线。这时 CPU 可以在一个时钟周期内,同时运行五条指令的不同阶段(相当于一条执行时间最长的复杂指令),IPC = 1,本质上,流水线技术并不能缩短单条指令的执行时间,但它变相地提高了指令地吞吐率。
提示:
奔腾四(Pentium 4)支持高达 35 级流水线,但由于功耗太高被废弃
5.SuperScalar 处理器
大多数处理器包含多个执行单元,并不是所有计算功能都集中在一起,可以再细分为整数运算单元、浮点数运算单元等,这样可以把多条指令也可以做到并行获取、译码等,CPU 可以在一个时钟周期内,执行多于一条指令,IPC > 1
八、CPU 缓存结构原理
1. CPU 缓存结构
查看CPU缓存
[root@lxyStudy ~]# lscpu Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian CPU(s): 2 On-line CPU(s) list: 0,1 Thread(s) per core: 1 Core(s) per socket: 1 座: 2 NUMA 节点: 1 厂商 ID: AuthenticAMD CPU 系列: 23 型号: 96 型号名称: AMD Ryzen 5 4500U with Radeon Graphics 步进: 1 CPU MHz: 2370.548 BogoMIPS: 4741.09 超管理器厂商: VMware 虚拟化类型: 完全 L1d 缓存: 32K L1i 缓存: 32K L2 缓存: 512K L3 缓存: 8192K NUMA 节点0 CPU: 0,1
速度比较
查看 cpu 缓存行
[root@lxyStudy ~]# cat /sys/devices/system/cpu/cpu0/cache/index0/coherency_line_size 64 //代表64个字节
cpu 拿到的内存地址格式是这样的
[高位组标记][低位索引][偏移量]
2. CPU 缓存读
读取数据流程如下
- 根据低位,计算在缓存中的索引
- 判断是否有效
- 0 去内存读取新数据更新缓存行
- 1 再对比高位组标记是否一致
- 一致,根据偏移量返回缓存数据
- 不一致,去内存读取新数据更新缓存行
3. CPU 缓存一致性
MESI 协议
- E、S、M 状态的缓存行都可以满足 CPU 的读请求
- E 状态的缓存行,有写请求,会将状态改为 M,这时并不触发向主存的写
- E 状态的缓存行,必须监听该缓存行的读操作,如果有,要变为 S 状态
M 状态的缓存行,必须监听该缓存行的读操作,如果有,先将其它缓存(S 状态)中该缓存行变成 I 状态(即6.的流程),写入主存,自己变为 S 状态
S 状态的缓存行,有写请求,走 4. 的流程
S 状态的缓存行,必须监听该缓存行的失效操作,如果有,自己变为 I 状态
I 状态的缓存行,有读请求,必须从主存读取