初阶C++—— 第三节—— 动态内存管理 初识模板

简介: 类模板实例化与函数模板实例化不同,类模板实例化需要在类模板名字后跟<>,然后将实例化的类型放在<>中即可,类模板名字不是真正的类,而实例化的结果才是真正的类。

目录


预备知识


C++内存管理方式


基本操作


开辟释放内置类型:


开辟释放自定义类型


operator new与operator delete函数


new和delete的实现原理


new的原理


delete的原理


new T[N]的原理


delete[]的原理


初识模板


函数模板


概念


函数模板格式


函数模板的原理


模板参数的匹配原则


类模板


类模板的定义格式


类模板的实例化


首先,还记得我们之前所说的C/C++的内存分布吗?


这个图其实我们已经引用第二次了。


预备知识

我们认为,C/C++ 包含内核空间、栈区、内存映射段、堆区、数据段、代码段等。


该图引自0基础C语言自学保姆教程——第十一节 自定义类型(结构体、枚举、位段、联合)与预处理指令(#define、#include等)_jxwd的博客-CSDN博客

微信图片_20221209141732.png



由于我们之前已经详细地说过,我们在这里就不再赘述。


同样,malloc/ralloc/calloc的联系和区别我们在这里也不再赘述,因为同样的道理,我们之前已经详细地探讨过了。


我们今天主要来讨论两个关键字:


new 和 delete。


C++内存管理方式

C语言内存管理方式在C++中可以继续使用,但有些地方就无能为力而且使用起来比较麻烦。


因此C++又提出了自己的内存管理方式:通过new和delete操作符进行动态内存管理


基本操作

开辟释放内置类型:

我们来举一个例子:

void func()
{
  int* ptr1 = new int;
  int* ptr2 = new int(10);  //动态申请一个,并初始化为10
  int* ptr3 = new int[3];   //动态申请三个int的空间
  delete ptr1;
  delete ptr2;
  delete[]ptr3;
}



如上所示,

image.png



需要注意的是:申请和释放单个元素的空间,使用new和delete操作符,申请和释放连续的空间,使用new[]和delete[]


开辟释放自定义类型

与malloc和free不同的是,new和delete在开辟和释放空间的时候,会调用构造和析构函数。


我们来举一个例子:

class Test
{
public:
    Test()
        : _data(0)
    {
        cout << "Test():" << this << endl;
    }
    ~Test()
    {
        cout << "~Test():" << this << endl;
    }
private:
    int _data;
};
void Test2()
{
    // 申请单个Test类型的空间
    Test* p1 = (Test*)malloc(sizeof(Test));
    free(p1);
   /* Test* p3 = new Test;
    delete p3;*/
}
int main()
{
    Test2();
    return 0;
}

operator new与operator delete函数

new和delete是用户进行动态内存申请和释放的操作符,operator new 和operator delete是系统提供的全局函数,new在底层调用operator new全局函数来申请空间,delete在底层通过operator delete全局函数来释放空间


通过转到定义,我们能看出其底层调用的是operator new函数。


而实际上:


operator new 实际也是通过malloc来申请空间,


如果malloc申请空间成功就直接返回,否则执行用户提供的空间不足应对措施,如果用户提供该措施就继续申请,否则就抛异常。


而operator delete 最终是通过free来释放空间的。


说了那么多,我们来总结一下:


new和delete的实现原理

如果申请的是内置类型的空间,new和malloc,delete和free基本类似,


不同的地方是:


new/delete申请和释放的是单个元素的空间,


new[]和delete[]申请的是连续空间,


而且new在申请空间失败时会抛异常,malloc会返回NULL。


new的原理

1. 调用operator new函数申请空间

2. 在申请的空间上执行构造函数,完成对象的构造


delete的原理

1. 在空间上执行析构函数,完成对象中资源的清理工作

2. 调用operator delete函数释放对象的空间


new T[N]的原理

1. 调用operator new[]函数,在operator new[]中实际调用operator new函数完成N个对象空间的申

2. 在申请的空间上执行N次构造函数


delete[]的原理

1. 在释放的对象空间上执行N次析构函数,完成N个对象中资源的清理

2. 调用operator delete[]释放空间,实际在operator delete[]中调用operator delete来释放空间


malloc/free和new/delete的共同点是:


都是从堆上申请空间,并且需要用户手动释放。


不同的地方是:


1. malloc和free是函数,new和delete是操作符


2. malloc申请的空间不会初始化,new可以初始化


3. malloc申请空间时,需要手动计算空间大小并传递,new只需在其后跟上空间的类型即可


4. malloc的返回值为void*, 在使用时必须强转,new不需要,因为new后跟的是空间的类型


5. malloc申请空间失败时,返回的是NULL,因此使用时必须判空,new不需要,但是new需要捕获异常


6. 申请自定义类型对象时,malloc/free只会开辟空间,不会调用构造函数与析构函数,而new在申请空间后会调用构造函数完成对象的初始化,delete在释放空间前会调用析构函数完成空间中资源的清理


初识模板

有些函数,如果仅仅是类型不同,代码的重复率较高,虽然用函数重载也可以实现,但是极为麻烦,维护效率也比较低。


那么我们有没有一种方法来解决上述的问题呢?


答案就是用函数模板。


说白了,就是告诉编译器一个模子,让其自己根据类型模子来去生成代码。


我们在这里,提到一个概念:泛型编程。


泛型编程:编写与类型无关的通用代码,是代码复用的一种手段。模板是泛型编程的基础。


函数模板

概念

函数模板代表了一个函数家族,该函数模板与类型无关,在使用时被参数化,根据实参类型产生函数的特定类型版本


函数模板格式

template

返回值类型 函数名(参数列表){}

举个例子:



就像这样。


注意,这里的class可以换成typename。但是不可以用struct。


函数模板的原理

函数模板是一个蓝图,它本身并不是函数,


是编译器用使用方式产生特定具体类型函数的模具。


所以其实模板就是将本来应该我们做的重复的事情交给了编译器。                


在编译器编译阶段,对于模板函数的使用,编译器需要根据传入的实参类型来推演生成对应类型的函数以供调用。


比如:当用double类型使用函数模板时,编译器通过对实参类型的推演,将T确定为double类型,然后产生一份专门处理double类型的代码,对于字符类型也是如此。


函数模板的实例化


用不同类型的参数使用函数模板时,称为函数模板的实例化。模板参数实例化分为:隐式实例化和显式实例化。


1、隐式实例化:让编译器根据实参推演模板参数的实际类型


2. 显式实例化:在函数名后的<>中指定模板参数的实际类型


如果类型不匹配,编译器会尝试进行隐式类型转换,如果无法转换成功编译器将会报错。


模板参数的匹配原则

一个非模板函数可以和一个同名的函数模板同时存在,而且该函数模板还可以被实例化为这个非模板函数。


对于非模板函数和同名函数模板,如果其他条件都相同,在调动时会优先调用非模板函数而不会从该模板产生出一个实例。


但如果模板可以产生一个具有更好匹配的函数, 那么将选择模板。


模板函数不允许自动类型转换,但普通函数可以进行自动类型转换


需要注意,所定义的一个模板只能够在一个类或者是一个函数中使用。不能支持同时又多个函数或者类使用同一个模板(可以理解为其是一次性的)


类模板

类模板的定义格式

template<class T1, class T2, ..., class Tn>
class 类模板名
{
    // 类内成员定义
};
比如:
template <class T>
class vector
{
    //...
}


需要注意:注意:vector不是具体的类,是编译器根据被实例化的类型生成具体类的模具


另外还要注意:类模板中函数放在类外进行定义时,需要加模板参数列表。。

template <class T>
Vector<T>::~Vector()
{
    if(_pData)
    delete[] _pData;
    _size = _capacity = 0;
}


类模板的实例化

类模板实例化与函数模板实例化不同,类模板实例化需要在类模板名字后跟<>,然后将实例化的类型放在<>中即可,类模板名字不是真正的类,而实例化的结果才是真正的类。


目录
相关文章
|
24天前
|
缓存 算法 程序员
C++STL底层原理:探秘标准模板库的内部机制
🌟蒋星熠Jaxonic带你深入STL底层:从容器内存管理到红黑树、哈希表,剖析迭代器、算法与分配器核心机制,揭秘C++标准库的高效设计哲学与性能优化实践。
C++STL底层原理:探秘标准模板库的内部机制
|
3月前
|
安全 C语言 C++
比较C++的内存分配与管理方式new/delete与C语言中的malloc/realloc/calloc/free。
在实用性方面,C++的内存管理方式提供了面向对象的特性,它是处理构造和析构、需要类型安全和异常处理的首选方案。而C语言的内存管理函数适用于简单的内存分配,例如分配原始内存块或复杂性较低的数据结构,没有构造和析构的要求。当从C迁移到C++,或在C++中使用C代码时,了解两种内存管理方式的差异非常重要。
146 26
|
8月前
|
存储 程序员 编译器
玩转C++内存管理:从新手到高手的必备指南
C++中的内存管理是编写高效、可靠程序的关键所在。C++不仅继承了C语言的内存管理方式,还增加了面向对象的内存分配机制,使得内存管理既有灵活性,也更加复杂。学习内存管理不仅有助于提升程序效率,还有助于理解计算机的工作原理和资源分配策略。
|
4月前
|
C语言 C++
c与c++的内存管理
再比如还有这样的分组: 这种分组是最正确的给出内存四个分区名字:栈区、堆区、全局区(俗话也叫静态变量区)、代码区(也叫代码段)(代码段又分很多种,比如常量区)当然也会看到别的定义如:两者都正确,记那个都选,我选择的是第一个。再比如还有这样的分组: 这种分组是最正确的答案分别是 C C C A A A A A D A B。
75 1
|
4月前
|
存储 算法 安全
c++模板进阶操作——非类型模板参数、模板的特化以及模板的分离编译
在 C++ 中,仿函数(Functor)是指重载了函数调用运算符()的对象。仿函数可以像普通函数一样被调用,但它们实际上是对象,可以携带状态并具有更多功能。与普通函数相比,仿函数具有更强的灵活性和可扩展性。仿函数通常通过定义一个包含operator()的类来实现。public:// 重载函数调用运算符Add add;// 创建 Add 类的对象// 使用仿函数return 0;
140 0
|
4月前
|
人工智能 机器人 编译器
c++模板初阶----函数模板与类模板
class 类模板名private://类内成员声明class Apublic:A(T val):a(val){}private:T a;return 0;运行结果:注意:类模板中的成员函数若是放在类外定义时,需要加模板参数列表。return 0;
114 0
|
7月前
|
存储 Linux C语言
C++/C的内存管理
本文主要讲解C++/C中的程序区域划分与内存管理方式。首先介绍程序区域,包括栈(存储局部变量等,向下增长)、堆(动态内存分配,向上分配)、数据段(存储静态和全局变量)及代码段(存放可执行代码)。接着探讨C++内存管理,new/delete操作符相比C语言的malloc/free更强大,支持对象构造与析构。还深入解析了new/delete的实现原理、定位new表达式以及二者与malloc/free的区别。最后附上一句鸡汤激励大家行动缓解焦虑。
|
7月前
|
编译器 C++
模板(C++)
本内容主要讲解了C++中的函数模板与类模板。函数模板是一个与类型无关的函数家族,使用时根据实参类型生成特定版本,其定义可用`typename`或`class`作为关键字。函数模板实例化分为隐式和显式,前者由编译器推导类型,后者手动指定类型。同时,非模板函数优先于同名模板函数调用,且模板函数不支持自动类型转换。类模板则通过在类名后加`&lt;&gt;`指定类型实例化,生成具体类。最后,语录鼓励大家继续努力,技术不断进步!
|
8月前
|
安全 C++
【c++】模板详解(2)
本文深入探讨了C++模板的高级特性,包括非类型模板参数、模板特化和模板分离编译。通过具体代码示例,详细讲解了非类型参数的应用场景及其限制,函数模板和类模板的特化方式,以及分离编译时可能出现的链接错误及解决方案。最后总结了模板的优点如提高代码复用性和类型安全,以及缺点如增加编译时间和代码复杂度。通过本文的学习,读者可以进一步加深对C++模板的理解并灵活应用于实际编程中。
117 0
|
8月前
|
安全 C语言 C++
彻底摘明白 C++ 的动态内存分配原理
大家好,我是V哥。C++的动态内存分配允许程序在运行时请求和释放内存,主要通过`new`/`delete`(用于对象)及`malloc`/`calloc`/`realloc`/`free`(继承自C语言)实现。`new`分配并初始化对象内存,`delete`释放并调用析构函数;而`malloc`等函数仅处理裸内存,不涉及构造与析构。掌握这些可有效管理内存,避免泄漏和悬空指针问题。智能指针如`std::unique_ptr`和`std::shared_ptr`能自动管理内存,确保异常安全。关注威哥爱编程,了解更多全栈开发技巧。 先赞再看后评论,腰缠万贯财进门。
395 0