数据结构与算法__03--二叉树前序线索化与前序线索化遍历(Java语言版)

简介: 二叉树前序线索化与前序线索化遍历(Java语言版),前序线索化与前序线索化遍历

@toc

1 前序线索化与前序线索化遍历

1.1 前序线索化二叉树


public void threadedPreNode(HeroNode node) {
    if (node == null) {
        return;
    }
    //线索化当前节点
    if (node.getLeft() == null) {
        node.setLeft(pre);
        node.setLeftType(1);
    }
    if (pre != null && pre.getRight() == null) {
        pre.setRight(node);
        pre.setRightType(1);
    }
    pre = node;
    //线索化左子树
    if (node.getLeftType() != 1) {
        threadedPreNode(node.getLeft());
    }
    //线索化右子树
    if (node.getRightType() != 1) {
        threadedPreNode(node.getRight());
    }
 
}

1.2 前序线索化遍历

public void threadedPreList() {
    //定义一个变量,存储当前遍历的结点,从root开始
    HeroNode node = root;
    while (node != null) {
        //打印当前这个结点
        System.out.println(node);
        while (node.getLeftType() == 0) {
            node = node.getLeft();
            System.out.println(node);
        }
        //如果当前结点的右指针指向的是后继结点,就一直输出
        while (node.getRightType() == 1) {
            //获取到当前结点的后继结点
            node = node.getRight();
            System.out.println(node);
        }
        //替换这个遍历的结点
        node = node.getRight();
 
    }
}

2 完整代码

package edu.seu.demo10tree.demothreadedbinarytree;
 
public class Demo01ThreadedBinaryTree {
    public static void main(String[] args) {
        //测试一把中序线索二叉树的功能
        HeroNode root = new HeroNode(1, "tom");
        HeroNode node2 = new HeroNode(3, "jack");
        HeroNode node3 = new HeroNode(6, "smith");
        HeroNode node4 = new HeroNode(8, "mary");
        HeroNode node5 = new HeroNode(10, "king");
        HeroNode node6 = new HeroNode(14, "dim");
 
        //二叉树,后面我们要递归创建, 现在简单处理使用手动创建
        root.setLeft(node2);
        root.setRight(node3);
        node2.setLeft(node4);
        node2.setRight(node5);
        node3.setLeft(node6);
 
        //测试中序线索化  8, 3, 10, 1, 14, 6
        ThreadedBinaryTree threadedBinaryTree = new ThreadedBinaryTree();
        threadedBinaryTree.setRoot(root);
 
//        threadedBinaryTree.threadedNode();
//        中序  8, 3, 10, 1, 14, 6
//        HeroNode leftNode = node5.getLeft();
//        HeroNode rightNode = node5.getRight();
//        System.out.println("10号结点的前驱结点是="  + leftNode); //3
//        System.out.println("10号结点的后继结点是="  + rightNode); //1
 
//        System.out.println("使用线索化的方式遍历 线索化二叉树");
//        threadedBinaryTree.threadedList();
 
//        前序 1,3,8,10,6,14
        threadedBinaryTree.threadedPreNode(root);
        HeroNode leftNode = node5.getLeft();
        HeroNode rightNode = node5.getRight();
        System.out.println("10号结点的前驱结点是=" + leftNode);
        System.out.println("10号结点的后继结点是=" + rightNode);
 
        System.out.println("使用线索化的方式遍历 线索化二叉树");
        threadedBinaryTree.threadedPreList();
 
    }
}
 
class HeroNode {
    private int no;//英雄编号
    private String name;//姓名
    private HeroNode left;//左子节点
    private HeroNode right;//右子节点
    private int rightType;//表示右子节点:指针:0,后继:1
    private int leftType;//表示左子节点:指针:0  前驱:1
 
    public int getRightType() {
        return rightType;
    }
 
    public void setRightType(int rightType) {
        this.rightType = rightType;
    }
 
    public int getLeftType() {
        return leftType;
    }
 
    public void setLeftType(int leftType) {
        this.leftType = leftType;
    }
//构造方法
 
    public HeroNode(int no, String name) {
        this.no = no;
        this.name = name;
    }
 
    //读取与设置私有变量
    public int getNo() {
        return no;
    }
 
    public void setNo(int no) {
        this.no = no;
    }
 
    public String getName() {
        return name;
    }
 
    public void setName(String name) {
        this.name = name;
    }
 
    public HeroNode getLeft() {
        return left;
    }
 
    public void setLeft(HeroNode left) {
        this.left = left;
    }
 
    public HeroNode getRight() {
        return right;
    }
 
    public void setRight(HeroNode right) {
        this.right = right;
    }
 
    //打印输出
 
    @Override
    public String toString() {
        return "HeroNode{" +
                "no=" + no +
                ", name='" + name + '\'' +
                '}';
    }
 
    //前序遍历
    public void preOrder() {
        System.out.println(this);//1.输出父节点
        if (this.getLeft() != null) {//2.向左遍历
            this.getLeft().preOrder();
        }
        if (this.getRight() != null) {//3.向右遍历
            this.getRight().preOrder();
        }
    }
 
    //中序遍历
    public void infixOrder() {
        if (this.getLeft() != null) {
            this.getLeft().infixOrder();
        }
        System.out.println(this);
        if (this.getRight() != null) {//3.向右遍历
            this.getRight().infixOrder();
        }
    }
 
    //后序遍历
    public void postOrder() {
        if (this.getLeft() != null) {
            this.getLeft().postOrder();
        }
        if (this.getRight() != null) {//3.向右遍历
            this.getRight().postOrder();
        }
        System.out.println(this);
    }
 
    //前序遍历查找
    public HeroNode preOrderSearch(int no) {
        System.out.println("前序查找比较次数");
        if (this.getNo() == no) {
            return this;
        }
        HeroNode resHero = null;
        if (this.left != null) {
            resHero = this.left.preOrderSearch(no);
        }
        if (resHero != null) {
            return resHero;
        }
        if (this.right != null) {
            resHero = this.right.preOrderSearch(no);
        }
        return resHero;
    }
 
    //中序遍历查找
    public HeroNode infixOrderSearch(int no) {
        HeroNode resHero = null;
        if (this.left != null) {
            resHero = this.left.infixOrderSearch(no);
        }
        if (resHero != null) {
            return resHero;
        }
        System.out.println("中序查找比较次数");
        if (this.getNo() == no) {
            return this;
        }
        if (this.right != null) {
            resHero = this.right.infixOrderSearch(no);
        }
        return resHero;
    }
 
    //后序遍历查找
    public HeroNode postOrderSearch(int no) {
        HeroNode resHero = null;
        if (this.left != null) {
            resHero = this.left.postOrderSearch(no);
        }
        if (resHero != null) {
            return resHero;
        }
 
        if (this.right != null) {
            resHero = this.right.postOrderSearch(no);
        }
        if (resHero != null) {
            return resHero;
        }
        System.out.println("后序查找比较次数");
        if (this.getNo() == no) {
            return this;
        }
        return resHero;
    }
 
    //删除节点
    public void delHeroNode(int no) {
        if (this.left != null && this.left.getNo() == no) {
            this.left = null;
            return;
        }
        if (this.right != null && this.right.getNo() == no) {
            this.right = null;
            return;
        }
        if (this.left != null) {
            this.left.delHeroNode(no);
        }
        if (this.right != null) {
            this.right.delHeroNode(no);
        }
    }
 
}
 
class ThreadedBinaryTree {
    private HeroNode root;//根节点
    private HeroNode pre = null;
 
    public ThreadedBinaryTree() {
    }
 
    public void threadedNode() {
        threadedNode(root);
    }
 
    //中序遍历线索化二叉树的方法
    public void threadedList() {
        //定义一个变量,存储当前遍历的结点,从root开始
        HeroNode node = root;
        while (node != null) {
            //循环的找到leftType == 1的结点,第一个找到就是8结点
            //后面随着遍历而变化,因为当leftType==1时,说明该结点是按照线索化
            //处理后的有效结点
            while (node.getLeftType() == 0) {
                node = node.getLeft();
            }
 
            //打印当前这个结点
            System.out.println(node);
            //如果当前结点的右指针指向的是后继结点,就一直输出
            while (node.getRightType() == 1) {
                //获取到当前结点的后继结点
                node = node.getRight();
                System.out.println(node);
            }
            //替换这个遍历的结点
            node = node.getRight();
 
        }
    }
 
    //中序线索化二叉树
    public void threadedNode(HeroNode node) {
        if (node == null) {
            return;
        }
        //线索化左子树
        threadedNode(node.getLeft());
        //线索化当前节点
        if (node.getLeft() == null) {
            node.setLeft(pre);
            node.setLeftType(1);
        }
        if (pre != null && pre.getRight() == null) {
            pre.setRight(node);
            pre.setRightType(1);
        }
        pre = node;
        //线索化右子树
        threadedNode(node.getRight());
    }
    //前序线索化二叉树
    public void threadedPreNode(HeroNode node) {
        if (node == null) {
            return;
        }
        //线索化当前节点
        if (node.getLeft() == null) {
            node.setLeft(pre);
            node.setLeftType(1);
        }
        if (pre != null && pre.getRight() == null) {
            pre.setRight(node);
            pre.setRightType(1);
        }
        pre = node;
        //线索化左子树
        if (node.getLeftType() != 1) {
            threadedPreNode(node.getLeft());
        }
        //线索化右子树
        if (node.getRightType() != 1) {
            threadedPreNode(node.getRight());
        }
 
    }
 
    //前序线索化遍历
    public void threadedPreList() {
        //定义一个变量,存储当前遍历的结点,从root开始
        HeroNode node = root;
        while (node != null) {
            //打印当前这个结点
            System.out.println(node);
            while (node.getLeftType() == 0) {
                node = node.getLeft();
                System.out.println(node);
            }
            //如果当前结点的右指针指向的是后继结点,就一直输出
            while (node.getRightType() == 1) {
                //获取到当前结点的后继结点
                node = node.getRight();
                System.out.println(node);
            }
            //替换这个遍历的结点
            node = node.getRight();
 
        }
    }
 
    public HeroNode getRoot() {
        return root;
    }
 
    public void setRoot(HeroNode root) {
        this.root = root;
    }
 
 
    //前序遍历
    public void preOrder() {
        if (this.root != null) {
            this.root.preOrder();
        } else {
            System.out.println("二叉树为空");
        }
    }
 
    //中序遍历
    public void infixOrder() {
        if (this.root != null) {
            this.root.infixOrder();
        } else {
            System.out.println("二叉树为空");
        }
    }
 
    //后序遍历
    public void postOrder() {
        if (this.root != null) {
            this.root.postOrder();
        } else {
            System.out.println("二叉树为空");
        }
    }
 
    //前序遍历查找
    public HeroNode preOrderSearch(int no) {
        if (root != null) {
            return root.preOrderSearch(no);
        } else {
            return null;
        }
    }
 
    //中序遍历查找
    public HeroNode infixOrderSearch(int no) {
        if (root != null) {
            return root.infixOrderSearch(no);
        } else {
            return null;
        }
    }
 
    //后序遍历查找
    public HeroNode postOrderSearch(int no) {
        if (root != null) {
            return this.root.postOrderSearch(no);
        } else {
            return null;
        }
    }
 
    //删除节点
    public void delHeroNode(int no) {
        if (root != null) {
            if (root.getNo() == no) {
                root = null;
            } else {
                root.delHeroNode(no);
            }
        } else {
            System.out.println("二叉树为空");
        }
    }
}
相关文章
|
16天前
|
SQL 安全 Java
安全问题已经成为软件开发中不可忽视的重要议题。对于使用Java语言开发的应用程序来说,安全性更是至关重要
在当今网络环境下,Java应用的安全性至关重要。本文深入探讨了Java安全编程的最佳实践,包括代码审查、输入验证、输出编码、访问控制和加密技术等,帮助开发者构建安全可靠的应用。通过掌握相关技术和工具,开发者可以有效防范安全威胁,确保应用的安全性。
34 4
|
1月前
|
Java 程序员 编译器
在Java编程中,保留字(如class、int、for等)是具有特定语法意义的预定义词汇,被语言本身占用,不能用作变量名、方法名或类名。
在Java编程中,保留字(如class、int、for等)是具有特定语法意义的预定义词汇,被语言本身占用,不能用作变量名、方法名或类名。本文通过示例详细解析了保留字的定义、作用及与自定义标识符的区别,帮助开发者避免因误用保留字而导致的编译错误,确保代码的正确性和可读性。
48 3
|
1月前
|
移动开发 Java 大数据
深入探索Java语言的核心优势与现代应用实践
【10月更文挑战第10天】深入探索Java语言的核心优势与现代应用实践
59 4
|
1月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
73 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
1月前
|
机器学习/深度学习 存储 缓存
数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍
文章主要介绍了排序算法的分类、时间复杂度的概念和计算方法,以及常见的时间复杂度级别,并简单提及了空间复杂度。
27 1
数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍
|
1月前
|
搜索推荐 算法
数据结构与算法学习十四:常用排序算法总结和对比
关于常用排序算法的总结和对比,包括稳定性、内排序、外排序、时间复杂度和空间复杂度等术语的解释。
21 0
数据结构与算法学习十四:常用排序算法总结和对比
|
1月前
|
存储 缓存 分布式计算
数据结构与算法学习一:学习前的准备,数据结构的分类,数据结构与算法的关系,实际编程中遇到的问题,几个经典算法问题
这篇文章是关于数据结构与算法的学习指南,涵盖了数据结构的分类、数据结构与算法的关系、实际编程中遇到的问题以及几个经典的算法面试题。
33 0
数据结构与算法学习一:学习前的准备,数据结构的分类,数据结构与算法的关系,实际编程中遇到的问题,几个经典算法问题
|
1月前
|
机器学习/深度学习 存储 算法
【数据结构与算法基础】——算法复杂度
【数据结构与算法基础】——算法复杂度
|
5月前
|
算法 C++ Python
数据结构与算法===贪心算法
数据结构与算法===贪心算法
|
1月前
|
算法 Java 索引
数据结构与算法学习十五:常用查找算法介绍,线性排序、二分查找(折半查找)算法、差值查找算法、斐波那契(黄金分割法)查找算法
四种常用的查找算法:顺序查找、二分查找(折半查找)、插值查找和斐波那契查找,并提供了Java语言的实现代码和测试结果。
21 0
下一篇
无影云桌面