数据结构与算法__03--二叉树前序线索化与前序线索化遍历(Java语言版)

简介: 二叉树前序线索化与前序线索化遍历(Java语言版),前序线索化与前序线索化遍历

@toc

1 前序线索化与前序线索化遍历

1.1 前序线索化二叉树


public void threadedPreNode(HeroNode node) {
    if (node == null) {
        return;
    }
    //线索化当前节点
    if (node.getLeft() == null) {
        node.setLeft(pre);
        node.setLeftType(1);
    }
    if (pre != null && pre.getRight() == null) {
        pre.setRight(node);
        pre.setRightType(1);
    }
    pre = node;
    //线索化左子树
    if (node.getLeftType() != 1) {
        threadedPreNode(node.getLeft());
    }
    //线索化右子树
    if (node.getRightType() != 1) {
        threadedPreNode(node.getRight());
    }
 
}

1.2 前序线索化遍历

public void threadedPreList() {
    //定义一个变量,存储当前遍历的结点,从root开始
    HeroNode node = root;
    while (node != null) {
        //打印当前这个结点
        System.out.println(node);
        while (node.getLeftType() == 0) {
            node = node.getLeft();
            System.out.println(node);
        }
        //如果当前结点的右指针指向的是后继结点,就一直输出
        while (node.getRightType() == 1) {
            //获取到当前结点的后继结点
            node = node.getRight();
            System.out.println(node);
        }
        //替换这个遍历的结点
        node = node.getRight();
 
    }
}

2 完整代码

package edu.seu.demo10tree.demothreadedbinarytree;
 
public class Demo01ThreadedBinaryTree {
    public static void main(String[] args) {
        //测试一把中序线索二叉树的功能
        HeroNode root = new HeroNode(1, "tom");
        HeroNode node2 = new HeroNode(3, "jack");
        HeroNode node3 = new HeroNode(6, "smith");
        HeroNode node4 = new HeroNode(8, "mary");
        HeroNode node5 = new HeroNode(10, "king");
        HeroNode node6 = new HeroNode(14, "dim");
 
        //二叉树,后面我们要递归创建, 现在简单处理使用手动创建
        root.setLeft(node2);
        root.setRight(node3);
        node2.setLeft(node4);
        node2.setRight(node5);
        node3.setLeft(node6);
 
        //测试中序线索化  8, 3, 10, 1, 14, 6
        ThreadedBinaryTree threadedBinaryTree = new ThreadedBinaryTree();
        threadedBinaryTree.setRoot(root);
 
//        threadedBinaryTree.threadedNode();
//        中序  8, 3, 10, 1, 14, 6
//        HeroNode leftNode = node5.getLeft();
//        HeroNode rightNode = node5.getRight();
//        System.out.println("10号结点的前驱结点是="  + leftNode); //3
//        System.out.println("10号结点的后继结点是="  + rightNode); //1
 
//        System.out.println("使用线索化的方式遍历 线索化二叉树");
//        threadedBinaryTree.threadedList();
 
//        前序 1,3,8,10,6,14
        threadedBinaryTree.threadedPreNode(root);
        HeroNode leftNode = node5.getLeft();
        HeroNode rightNode = node5.getRight();
        System.out.println("10号结点的前驱结点是=" + leftNode);
        System.out.println("10号结点的后继结点是=" + rightNode);
 
        System.out.println("使用线索化的方式遍历 线索化二叉树");
        threadedBinaryTree.threadedPreList();
 
    }
}
 
class HeroNode {
    private int no;//英雄编号
    private String name;//姓名
    private HeroNode left;//左子节点
    private HeroNode right;//右子节点
    private int rightType;//表示右子节点:指针:0,后继:1
    private int leftType;//表示左子节点:指针:0  前驱:1
 
    public int getRightType() {
        return rightType;
    }
 
    public void setRightType(int rightType) {
        this.rightType = rightType;
    }
 
    public int getLeftType() {
        return leftType;
    }
 
    public void setLeftType(int leftType) {
        this.leftType = leftType;
    }
//构造方法
 
    public HeroNode(int no, String name) {
        this.no = no;
        this.name = name;
    }
 
    //读取与设置私有变量
    public int getNo() {
        return no;
    }
 
    public void setNo(int no) {
        this.no = no;
    }
 
    public String getName() {
        return name;
    }
 
    public void setName(String name) {
        this.name = name;
    }
 
    public HeroNode getLeft() {
        return left;
    }
 
    public void setLeft(HeroNode left) {
        this.left = left;
    }
 
    public HeroNode getRight() {
        return right;
    }
 
    public void setRight(HeroNode right) {
        this.right = right;
    }
 
    //打印输出
 
    @Override
    public String toString() {
        return "HeroNode{" +
                "no=" + no +
                ", name='" + name + '\'' +
                '}';
    }
 
    //前序遍历
    public void preOrder() {
        System.out.println(this);//1.输出父节点
        if (this.getLeft() != null) {//2.向左遍历
            this.getLeft().preOrder();
        }
        if (this.getRight() != null) {//3.向右遍历
            this.getRight().preOrder();
        }
    }
 
    //中序遍历
    public void infixOrder() {
        if (this.getLeft() != null) {
            this.getLeft().infixOrder();
        }
        System.out.println(this);
        if (this.getRight() != null) {//3.向右遍历
            this.getRight().infixOrder();
        }
    }
 
    //后序遍历
    public void postOrder() {
        if (this.getLeft() != null) {
            this.getLeft().postOrder();
        }
        if (this.getRight() != null) {//3.向右遍历
            this.getRight().postOrder();
        }
        System.out.println(this);
    }
 
    //前序遍历查找
    public HeroNode preOrderSearch(int no) {
        System.out.println("前序查找比较次数");
        if (this.getNo() == no) {
            return this;
        }
        HeroNode resHero = null;
        if (this.left != null) {
            resHero = this.left.preOrderSearch(no);
        }
        if (resHero != null) {
            return resHero;
        }
        if (this.right != null) {
            resHero = this.right.preOrderSearch(no);
        }
        return resHero;
    }
 
    //中序遍历查找
    public HeroNode infixOrderSearch(int no) {
        HeroNode resHero = null;
        if (this.left != null) {
            resHero = this.left.infixOrderSearch(no);
        }
        if (resHero != null) {
            return resHero;
        }
        System.out.println("中序查找比较次数");
        if (this.getNo() == no) {
            return this;
        }
        if (this.right != null) {
            resHero = this.right.infixOrderSearch(no);
        }
        return resHero;
    }
 
    //后序遍历查找
    public HeroNode postOrderSearch(int no) {
        HeroNode resHero = null;
        if (this.left != null) {
            resHero = this.left.postOrderSearch(no);
        }
        if (resHero != null) {
            return resHero;
        }
 
        if (this.right != null) {
            resHero = this.right.postOrderSearch(no);
        }
        if (resHero != null) {
            return resHero;
        }
        System.out.println("后序查找比较次数");
        if (this.getNo() == no) {
            return this;
        }
        return resHero;
    }
 
    //删除节点
    public void delHeroNode(int no) {
        if (this.left != null && this.left.getNo() == no) {
            this.left = null;
            return;
        }
        if (this.right != null && this.right.getNo() == no) {
            this.right = null;
            return;
        }
        if (this.left != null) {
            this.left.delHeroNode(no);
        }
        if (this.right != null) {
            this.right.delHeroNode(no);
        }
    }
 
}
 
class ThreadedBinaryTree {
    private HeroNode root;//根节点
    private HeroNode pre = null;
 
    public ThreadedBinaryTree() {
    }
 
    public void threadedNode() {
        threadedNode(root);
    }
 
    //中序遍历线索化二叉树的方法
    public void threadedList() {
        //定义一个变量,存储当前遍历的结点,从root开始
        HeroNode node = root;
        while (node != null) {
            //循环的找到leftType == 1的结点,第一个找到就是8结点
            //后面随着遍历而变化,因为当leftType==1时,说明该结点是按照线索化
            //处理后的有效结点
            while (node.getLeftType() == 0) {
                node = node.getLeft();
            }
 
            //打印当前这个结点
            System.out.println(node);
            //如果当前结点的右指针指向的是后继结点,就一直输出
            while (node.getRightType() == 1) {
                //获取到当前结点的后继结点
                node = node.getRight();
                System.out.println(node);
            }
            //替换这个遍历的结点
            node = node.getRight();
 
        }
    }
 
    //中序线索化二叉树
    public void threadedNode(HeroNode node) {
        if (node == null) {
            return;
        }
        //线索化左子树
        threadedNode(node.getLeft());
        //线索化当前节点
        if (node.getLeft() == null) {
            node.setLeft(pre);
            node.setLeftType(1);
        }
        if (pre != null && pre.getRight() == null) {
            pre.setRight(node);
            pre.setRightType(1);
        }
        pre = node;
        //线索化右子树
        threadedNode(node.getRight());
    }
    //前序线索化二叉树
    public void threadedPreNode(HeroNode node) {
        if (node == null) {
            return;
        }
        //线索化当前节点
        if (node.getLeft() == null) {
            node.setLeft(pre);
            node.setLeftType(1);
        }
        if (pre != null && pre.getRight() == null) {
            pre.setRight(node);
            pre.setRightType(1);
        }
        pre = node;
        //线索化左子树
        if (node.getLeftType() != 1) {
            threadedPreNode(node.getLeft());
        }
        //线索化右子树
        if (node.getRightType() != 1) {
            threadedPreNode(node.getRight());
        }
 
    }
 
    //前序线索化遍历
    public void threadedPreList() {
        //定义一个变量,存储当前遍历的结点,从root开始
        HeroNode node = root;
        while (node != null) {
            //打印当前这个结点
            System.out.println(node);
            while (node.getLeftType() == 0) {
                node = node.getLeft();
                System.out.println(node);
            }
            //如果当前结点的右指针指向的是后继结点,就一直输出
            while (node.getRightType() == 1) {
                //获取到当前结点的后继结点
                node = node.getRight();
                System.out.println(node);
            }
            //替换这个遍历的结点
            node = node.getRight();
 
        }
    }
 
    public HeroNode getRoot() {
        return root;
    }
 
    public void setRoot(HeroNode root) {
        this.root = root;
    }
 
 
    //前序遍历
    public void preOrder() {
        if (this.root != null) {
            this.root.preOrder();
        } else {
            System.out.println("二叉树为空");
        }
    }
 
    //中序遍历
    public void infixOrder() {
        if (this.root != null) {
            this.root.infixOrder();
        } else {
            System.out.println("二叉树为空");
        }
    }
 
    //后序遍历
    public void postOrder() {
        if (this.root != null) {
            this.root.postOrder();
        } else {
            System.out.println("二叉树为空");
        }
    }
 
    //前序遍历查找
    public HeroNode preOrderSearch(int no) {
        if (root != null) {
            return root.preOrderSearch(no);
        } else {
            return null;
        }
    }
 
    //中序遍历查找
    public HeroNode infixOrderSearch(int no) {
        if (root != null) {
            return root.infixOrderSearch(no);
        } else {
            return null;
        }
    }
 
    //后序遍历查找
    public HeroNode postOrderSearch(int no) {
        if (root != null) {
            return this.root.postOrderSearch(no);
        } else {
            return null;
        }
    }
 
    //删除节点
    public void delHeroNode(int no) {
        if (root != null) {
            if (root.getNo() == no) {
                root = null;
            } else {
                root.delHeroNode(no);
            }
        } else {
            System.out.println("二叉树为空");
        }
    }
}
相关文章
|
1天前
|
存储 缓存 算法
如何提高二叉树遍历算法的效率?
选择合适的遍历算法,如按层次遍历树时使用广度优先搜索(BFS),中序遍历二叉搜索树以获得有序序列。优化数据结构,如使用线索二叉树减少空指针判断,自定义节点类增加辅助信息。利用递归与非递归的特点,避免栈溢出问题。多线程并行遍历提高速度,注意线程安全。缓存中间结果,避免重复计算。预先计算并存储信息,提高遍历效率。综合运用这些方法,提高二叉树遍历算法的效率。
14 5
|
1天前
|
算法
树的遍历算法有哪些?
不同的遍历算法适用于不同的应用场景。深度优先搜索常用于搜索、路径查找等问题;广度优先搜索则在图的最短路径、层次相关的问题中较为常用;而二叉搜索树的遍历在数据排序、查找等方面有重要应用。
7 2
|
3天前
|
存储 Java 开发者
在 Java 中,如何遍历一个 Set 集合?
【10月更文挑战第30天】开发者可以根据具体的需求和代码风格选择合适的遍历方式。增强for循环简洁直观,适用于大多数简单的遍历场景;迭代器则更加灵活,可在遍历过程中进行更多复杂的操作;而Lambda表达式和`forEach`方法则提供了一种更简洁的函数式编程风格的遍历方式。
|
4天前
|
机器学习/深度学习 JSON 算法
二叉树遍历算法的应用场景有哪些?
【10月更文挑战第29天】二叉树遍历算法作为一种基础而重要的算法,在许多领域都有着不可或缺的应用,它为解决各种复杂的问题提供了有效的手段和思路。随着计算机科学的不断发展,二叉树遍历算法也在不断地被优化和扩展,以适应新的应用场景和需求。
10 0
|
14天前
|
Java 程序员 编译器
Java|如何正确地在遍历 List 时删除元素
从源码分析如何正确地在遍历 List 时删除元素。为什么有的写法会导致异常,而另一些不会。
16 3
|
27天前
|
前端开发 小程序 Java
java基础:map遍历使用;java使用 Patten 和Matches 进行正则匹配;后端传到前端展示图片三种情况,并保存到手机
这篇文章介绍了Java中Map的遍历方法、使用Pattern和matches进行正则表达式匹配,以及后端向前端传输图片并保存到手机的三种情况。
17 1
|
1月前
|
存储 算法 Java
Java一分钟之-数组的创建与遍历
数组作为Java中存储和操作一组相同类型数据的基本结构,其创建和遍历是编程基础中的基础。通过不同的创建方式,可以根据实际需求灵活地初始化数组。而选择合适的遍历方法,则可以提高代码的可读性和效率。掌握这些基本技能,对于深入学习Java乃至其他编程语言的数据结构和算法都是至关重要的。
22 6
|
28天前
|
存储 算法
数据结构与算法学习十六:树的知识、二叉树、二叉树的遍历(前序、中序、后序、层次)、二叉树的查找(前序、中序、后序、层次)、二叉树的删除
这篇文章主要介绍了树和二叉树的基础知识,包括树的存储方式、二叉树的定义、遍历方法(前序、中序、后序、层次遍历),以及二叉树的查找和删除操作。
22 0
|
Java
java实现简单的二叉树ADT
java实现简单的二叉树ADT
158 0
|
Java 程序员
java实现简单二叉树
java实现简单二叉树
386 0
java实现简单二叉树