UVA12676 Inverting Huffman

简介: UVA12676 Inverting Huffman

UVA12676 Inverting Huffman


题目描述:

静态哈夫曼编码是一种主要用于文本压缩的编码算法。给定一个由 N 个不同字符组成的特定长度的文本,算法选择 N 个编码,每个不同的字符一个编码。使用这些编码压缩文本,当选择编码算法构建一个具有 N 个叶子的二叉树时,对于 N≥2,树的构建如下:


对文本中的每个不同字符,构建一个仅包含单个结点的树,并为其分配权值,权值与文本中该字符出现的次数一致。

构建一个包含上述 N 棵树的集合 s。

当 s 包含多于一棵树时:

(a) 选择最小的权值 t1∈s,并将其从 s 中删除;

(b) 选择最小的权值 t2∈s,并将其从 s 中删除;

(c) 构建一棵新树 t,t1 为其左子树,t2 为其右子树,并且 t 的权值为 t1、t2 权

值之和;

(d) 将 t 加入 s 集合。

返回保留在 s 中的唯一一棵树。

对于文本““abracadabra”,由上述过程生成的树,可以像下图左侧,其中每个内部结点编辑有子树根的权值。请注意获得的树也可以像下图右侧或其它,因为在步骤 3(a)、3(b)中,结合可能包含几个权值最小的树。

20210221130906747.jpg

对文本中的每个不同字符,其编码取决于最终树中从根到对应字符的叶子之间的路径,编码的长度是这条路径中的边数(与路径中的内部结点一致)。假设该算法构建的是左侧的树,“r”的代码长度为 3,“d”的代码长度为 4。

根据算法选择的 N 个代码的长度,找所有字符总数的最小值。

输入:

输入文件包含多个测试用例,每个测试用例如下所述:

第一行包含一个整数 N(2≤N≤50),表示文本中出现的不同字符数。

第二行包含 N 个整数 Li(1≤Li≤50,i=1,2,…,N),表示由 huffman 算法生成的不同字符的编码长度。

假设至少存在一棵上述算法构建的树,可以生成具有给定长度的编码。


输出:

对每个测试用例,输出一行,表示所有字符总数的最小值。


样例输入

2

1 1

4

2 2 2 2

10

8 2 4 7 5 1 6 9 3 9


样例输出

2

4

89


题解:

根据编码长度,推测最小字符数。

举例:

4

3 1 2 3

最长编码为 3,即最大深度为 3。

20210221131020376.jpg


算法设计:

(1) 每一层用一个深度数组 deep[]记录该层结点权值,该层每个结点的权值初始化

为 0,等待推测权值;

(2) 根据输入的编码长度算出最大长度即最大深度 maxd。

(3) 从最大深度 maxd 向上计算并推测,直到树根。开始时 temp=1;

⚫ i=maxd:第 i 层的结点权值如果为 0,则初始化为 temp(此时,temp=1)。

对第 i 层从小到大排序,然后将第 i 层每两个合并,权值放入上一层(i-1

层)。更新 temp 为第 i 层排序后的最后一个元素(最大元素)。

⚫ i=maxd-1:重复上述操作;

⚫ i=0:结束。输出第 0 层第一个元素。


解题思路

本题主要考察哈夫曼树的应用;

题目要求给出每个字符出现的长度,计算编码的最小长度.可以从后往前推,但要明白上一层的叶子结点值必须>=本层节点的最大值.最后一层值为1.然后依次往上推即可.最后根节点对应的权值便是编码的最小长度.


代码实现

#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
const int MAXSIZE = 60;
vector<long long> deep[MAXSIZE];
int n,x,maxd;
long long temp = 1;
int main()
{
  while (cin >> n)
  {
    for (int i = 0; i < n; i++)
    {
      cin >> x;
      deep[x].push_back(0);
      maxd = max(maxd, x);//求最大深度
    }
    for (int i = maxd; i > 0; i--)//从maxd向上推测
    {
      for (int j = 0; j < deep[i].size(); j++)//第i层初始化
      {
        if (!deep[i][j])
        {
          deep[i][j] = temp;
        }
      }
      sort(deep[i].begin(), deep[i].end());//排序
      for (int j = 0; j < deep[i].size(); j += 2)//两两合并
      {
        deep[i - 1].push_back(deep[i][j] + deep[i][j + 1]);//新生成的节点放到上一层
      }
      temp = *(deep[i].end() - 1);//更新temp  上一层叶子结点权值 >= 该层的最大值.
    }
    cout << *deep[0].begin() << endl;//输出最小长度.
    //更新数据
    for (int i = 0; i < MAXSIZE; i++)//数组初始化
    {
      deep[i].clear();
    }
    maxd = 0;
    temp = 1;
  }
  return 0;
}
相关文章
UVa10484 - Divisibility of Factors(数论)
UVa10484 - Divisibility of Factors(数论)
73 1
UVa11420 - Chest of Drawers(动态规划)
UVa11420 - Chest of Drawers(动态规划)
50 0
UVa11710 - Expensive subway(最小生成树)
UVa11710 - Expensive subway(最小生成树)
52 0
UVa668 - Parliament(贪心)
UVa668 - Parliament(贪心)
66 0
UVa10596 - Morning Walk(并查集)
UVa10596 - Morning Walk(并查集)
66 0
|
人工智能 BI
[UVA 1599] Ideal Path | 细节最短路
Description New labyrinth attraction is open in New Lostland amusement park. The labyrinth consists of n rooms connected by m passages. Each passage is colored into some color ci .
213 0
|
机器学习/深度学习 网络架构
题解 UVA10212 【The Last Non-zero Digit.】
题目链接 这题在学长讲完之后和看完题解之后才明白函数怎么构造。这题构造一个$f(n)$$f(n)$ $=$ $n$除以 $2^{a}$ $*$ $5^{b}$ ,$a$ , $b$ 分别是 $n$ 质因数分解后$2,5$的个数。
1240 0