主存储器与CPU的连接计算题详解

简介: 本篇文章主要讨论计算机组成原理中主存储器与CPU的连接中出现的计算题,希望能对正在学习计算机组成原理或即将学习本科目的同学有所帮助。

例题如下:

cpu有16条地址线,有8条数据线,MREQ做为访存控制信号,MREQ低电平有效,存储芯片RAM包括1K4位、4K8位、8K8位,ROM包括2K8位、4K8位、8K8位;

寻址范围:6000H——67FFH为系统程序区、6800H——6BFFH为用户程序区


解:

(1)写出对应的二进制地址码


20200609221312683.png

注:

为什么是A0-A15?

因为有16条地址线

第一步是按照寻址范围把地址写出来20200609222152957.png

第二步确定芯片的数量及类型20200609222929362.png

第三步是分配地址线即20200609223321645.png

第四步是确定片选信号20200609223847397.png

第五步连线画图20200609225540740.png

另外的情况(可能出现的情况)2020060923021116.png

连接时要注意一些芯片可能需要溢出和地址线共同控制,方案是地址线和溢出进行非运算后再进行与非运算,如图

20200609230741197.png

谢谢大家的浏览!

相关文章
|
8月前
|
人工智能 并行计算 PyTorch
【PyTorch&TensorBoard实战】GPU与CPU的计算速度对比(附代码)
【PyTorch&TensorBoard实战】GPU与CPU的计算速度对比(附代码)
405 0
|
缓存 测试技术 数据中心
【计算机架构】计算 CPU 动态功耗 | 集成电路成本 | SPEC 基准测试 | Amdahl 定律 | MIPS 性能指标
【计算机架构】计算 CPU 动态功耗 | 集成电路成本 | SPEC 基准测试 | Amdahl 定律 | MIPS 性能指标
491 0
|
算法 编译器
【计算机架构】响应时间和吞吐量 | 相对性能 | 计算 CPU 时间 | 指令技术与 CPI | T=CC/CR, CC=IC*CPI
【计算机架构】响应时间和吞吐量 | 相对性能 | 计算 CPU 时间 | 指令技术与 CPI | T=CC/CR, CC=IC*CPI
1248 1
|
1月前
|
人工智能 缓存 并行计算
转载:【AI系统】CPU 计算本质
本文深入探讨了CPU计算性能,分析了算力敏感度及技术趋势对CPU性能的影响。文章通过具体数据和实例,讲解了CPU算力的计算方法、算力与数据加载之间的平衡,以及如何通过算力敏感度分析优化计算系统性能。同时,文章还考察了服务器、GPU和超级计算机等平台的性能发展,揭示了这些变化如何塑造我们对CPU性能的理解和期待。
转载:【AI系统】CPU 计算本质
|
5月前
|
C++
C++ 根据程序运行的时间和cpu频率来计算在另外的cpu上运行所花的时间
C++ 根据程序运行的时间和cpu频率来计算在另外的cpu上运行所花的时间
61 0
|
2月前
|
人工智能 缓存 并行计算
【AI系统】CPU 计算本质
本文深入探讨了CPU计算性能,分析了算力敏感度及技术趋势对CPU性能的影响。文章通过具体数据和实例,解释了算力计算方法、数据加载与计算的平衡点,以及如何通过算力敏感度分析优化性能瓶颈。同时,文章还讨论了服务器、GPU和超级计算机等不同计算平台的性能发展趋势,强调了优化数据传输速率和加载策略的重要性。
74 4
|
2月前
|
缓存 人工智能 算法
【AI系统】CPU 计算时延
CPU(中央处理器)是计算机系统的核心,其计算时延(从指令发出到完成所需时间)对系统性能至关重要。本文探讨了CPU计算时延的组成,包括指令提取、解码、执行、存储器访问及写回时延,以及影响时延的因素,如时钟频率、流水线技术、并行处理、缓存命中率和内存带宽。通过优化这些方面,可以有效降低计算时延,提升系统性能。文中还通过具体示例解析了时延产生的原因,强调了内存时延对计算速度的关键影响。
54 0
|
4月前
|
KVM 虚拟化
计算虚拟化之CPU——qemu解析
【9月更文挑战10天】本文介绍了QEMU命令行参数的解析过程及其在KVM虚拟化中的应用。展示了QEMU通过多个`qemu_add_opts`函数调用处理不同类型设备和配置选项的方式,并附上了OpenStack生成的一个复杂KVM参数实例。
|
4月前
|
算法 C++
如何精确计算出一个算法的CPU运行时间?
如何精确计算出一个算法的CPU运行时间?
|
5月前
|
算法 Windows
CAE如何基于CPU最佳核数和token等计算成本
【8月更文挑战第26天】在使用CAE(计算机辅助工程)进行分析计算时,需综合考虑CPU核数和token对成本的影响。CPU核数越多,虽能加速计算,但过多核数会因通信开销和内存带宽限制导致性能提升放缓。成本计算需考虑硬件租赁或购买费用及云服务收费标准。Token作为软件许可,需分摊到每次计算中。通过测试优化找到性能与成本的平衡点,实现最低成本下的高效计算。
101 1

热门文章

最新文章