主存储器与CPU的连接计算题详解

简介: 本篇文章主要讨论计算机组成原理中主存储器与CPU的连接中出现的计算题,希望能对正在学习计算机组成原理或即将学习本科目的同学有所帮助。

例题如下:

cpu有16条地址线,有8条数据线,MREQ做为访存控制信号,MREQ低电平有效,存储芯片RAM包括1K4位、4K8位、8K8位,ROM包括2K8位、4K8位、8K8位;

寻址范围:6000H——67FFH为系统程序区、6800H——6BFFH为用户程序区


解:

(1)写出对应的二进制地址码


20200609221312683.png

注:

为什么是A0-A15?

因为有16条地址线

第一步是按照寻址范围把地址写出来20200609222152957.png

第二步确定芯片的数量及类型20200609222929362.png

第三步是分配地址线即20200609223321645.png

第四步是确定片选信号20200609223847397.png

第五步连线画图20200609225540740.png

另外的情况(可能出现的情况)2020060923021116.png

连接时要注意一些芯片可能需要溢出和地址线共同控制,方案是地址线和溢出进行非运算后再进行与非运算,如图

20200609230741197.png

谢谢大家的浏览!

相关文章
|
6月前
|
人工智能 并行计算 PyTorch
【PyTorch&TensorBoard实战】GPU与CPU的计算速度对比(附代码)
【PyTorch&TensorBoard实战】GPU与CPU的计算速度对比(附代码)
351 0
|
缓存 测试技术 数据中心
【计算机架构】计算 CPU 动态功耗 | 集成电路成本 | SPEC 基准测试 | Amdahl 定律 | MIPS 性能指标
【计算机架构】计算 CPU 动态功耗 | 集成电路成本 | SPEC 基准测试 | Amdahl 定律 | MIPS 性能指标
455 0
|
算法 编译器
【计算机架构】响应时间和吞吐量 | 相对性能 | 计算 CPU 时间 | 指令技术与 CPI | T=CC/CR, CC=IC*CPI
【计算机架构】响应时间和吞吐量 | 相对性能 | 计算 CPU 时间 | 指令技术与 CPI | T=CC/CR, CC=IC*CPI
1127 1
|
3月前
|
C++
C++ 根据程序运行的时间和cpu频率来计算在另外的cpu上运行所花的时间
C++ 根据程序运行的时间和cpu频率来计算在另外的cpu上运行所花的时间
47 0
|
2月前
|
KVM 虚拟化
计算虚拟化之CPU——qemu解析
【9月更文挑战10天】本文介绍了QEMU命令行参数的解析过程及其在KVM虚拟化中的应用。展示了QEMU通过多个`qemu_add_opts`函数调用处理不同类型设备和配置选项的方式,并附上了OpenStack生成的一个复杂KVM参数实例。
|
2月前
|
算法 C++
如何精确计算出一个算法的CPU运行时间?
如何精确计算出一个算法的CPU运行时间?
|
3月前
|
算法 Windows
CAE如何基于CPU最佳核数和token等计算成本
【8月更文挑战第26天】在使用CAE(计算机辅助工程)进行分析计算时,需综合考虑CPU核数和token对成本的影响。CPU核数越多,虽能加速计算,但过多核数会因通信开销和内存带宽限制导致性能提升放缓。成本计算需考虑硬件租赁或购买费用及云服务收费标准。Token作为软件许可,需分摊到每次计算中。通过测试优化找到性能与成本的平衡点,实现最低成本下的高效计算。
|
4月前
|
并行计算 API 数据处理
GPU(图形处理单元)因其强大的并行计算能力而备受关注。与传统的CPU相比,GPU在处理大规模数据密集型任务时具有显著的优势。
GPU(图形处理单元)因其强大的并行计算能力而备受关注。与传统的CPU相比,GPU在处理大规模数据密集型任务时具有显著的优势。
|
5月前
|
弹性计算 安全 前端开发
阿里云服务器ECS通用型、计算型和内存实例区别、CPU型号、性能参数表
阿里云ECS实例有计算型(c)、通用型(g)和内存型(r)系列,区别在于CPU内存比。计算型1:2,如2核4G;通用型1:4,如2核8G;内存型1:8,如2核16G。实例有第五代至第八代,如c7、g5、r8a等,每代CPU型号和主频提升。例如,c7使用Intel Ice Lake,g7支持虚拟化Enclave。实例性能参数包括网络带宽、收发包能力、IOPS等,适合不同场景,如视频处理、游戏、数据库等
155 0
|
6月前
|
存储 芯片 块存储
计算机组成原理(2)-----存储芯片与CPU的连接
计算机组成原理(2)-----存储芯片与CPU的连接
278 1