动态规划基础——dp五部曲模板(一)

简介: 动态规划基础——dp五部曲模板(一)

一、套路


复现代码随想录DP专题


代码随想录 (programmercarl.com)

动态规划五部曲


确定dp数组以及下标的含义

确定递推公式

dp数组如何初始化

确定遍历顺序

打印数组(与自己的推导比较,看哪里错了)


二、DP基础


1. 斐波那契数(LeetCode-509)

题目

斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:

F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1


给定 n ,请计算 F(n) 。


示例 1:

输入:n = 2
输出:1
解释:F(2) = F(1) + F(0) = 1 + 0 = 1


示例 2:

输入:n = 3
输出:2
解释:F(3) = F(2) + F(1) = 1 + 1 = 2


示例 3:

输入:n = 4
输出:3
解释:F(4) = F(3) + F(2) = 2 + 1 = 3


提示:


0 <= n <= 30


思路

这题很简单,我试着用五部曲练练手


dp[i] 的意义为:第 i 个数的斐波那契数值为 dp[i]

d p [ i ] = d p [ i − 1 ] + d p [ i − 2 ]

dp[0]=0 dp[1]=1

根据递推公式可知,dp[i] 依赖它的前两个元素,所以一定是从前往后遍历

推导一下前十项 0 1 1 2 3 5 8 13 21 34 55


代码展示

class Solution
{
public:
    int fib(int n)
    {
        vector<int> dp(35);
        dp[0] = 0;
        dp[1] = 1;
        for (int i = 2; i <= n; i++)
        {
            dp[i] = dp[i - 1] + dp[i - 2];
        }
        return dp[n];
    }
};


但其实还可以优化,因为dp[i] 只依赖它的前两个元素,只需维护两个元素,没有必要写出整个数组,浪费了空间

class Solution
{
public:
    int fib(int n)
    {
        vector<int> dp(3);
        dp[0] = 0;
        dp[1] = 1;
        if (n < 2)
        {
            return dp[n];
        }
        int result;
        for (int i = 2; i <= n; i++)
        {
            result = dp[0] + dp[1];
            dp[0] = dp[1];
            dp[1] = result;
        }
        return result;
    }
};


2. 爬楼梯(LeetCode-70)

题目

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。


每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?


**注意:**给定 n 是一个正整数。


示例 1:

输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
1.  1 阶 + 1 阶
2.  2 阶


示例 2:

输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
1.  1 阶 + 1 阶 + 1 阶
2.  1 阶 + 2 阶
3.  2 阶 + 1 阶


思路

第⼀层楼梯再跨两步就到第三层 ,第⼆层楼梯再跨⼀步就到第三层。 所以到第三层楼梯的状态可以由第⼆层楼梯和到第⼀层楼梯状态推导出来


五部曲


dp[i] 定义:爬到第 i 阶有 dp[i] 种方法

d p [ i ] = d p [ i − 2 ] + d p [ i − 1 ]

dp[1]=1 dp[2]=2 正整数不用考虑 dp[0]

肯定从前往后

前五项 1 2 3 5 8


代码展示

class Solution
{
public:
    int climbStairs(int n)
    {
        // 这步忘记了,导致n=1时访问不到dp[2]
        if (n<=1)
        {
            return n;
        }  
        vector<int> dp(n + 1);
        dp[1] = 1, dp[2] = 2;
        for (int i = 3; i <= n; i++)
        {
            dp[i] = dp[i - 1] + dp[i - 2];
            cout << dp[i];
        }
        return dp[n];
    }
};


也是可以优化,滚动数组优化空间

class Solution
{
public:
    int climbStairs(int n)
    {
        if (n <= 2)
        {
            return n;
        }
        vector<int> dp(3);
        dp[1] = 1, dp[2] = 2;
        int result;
        for (int i = 3; i <= n; i++)
        {
            result = dp[1] + dp[2];
            dp[1] = dp[2];
            dp[2] = result;
        }
        return result;
    }
};


3. 使用最小花费爬楼梯(LeetCode-746)

题目

给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。


你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。


请你计算并返回达到楼梯顶部的最低花费。


示例 1:

输入:cost = [10,15,20]
输出:15
解释:你将从下标为 1 的台阶开始。
- 支付 15 ,向上爬两个台阶,到达楼梯顶部。
总花费为 15 。


示例 2:

输入:cost = [1,100,1,1,1,100,1,1,100,1]
输出:6
解释:你将从下标为 0 的台阶开始。
- 支付 1 ,向上爬两个台阶,到达下标为 2 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 4 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 6 的台阶。
- 支付 1 ,向上爬一个台阶,到达下标为 7 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 9 的台阶。
- 支付 1 ,向上爬一个台阶,到达楼梯顶部。
总花费为 6 。


提示:


2 <= cost.length <= 1000

0 <= cost[i] <= 999


思路

五部曲


1.定义: 爬到第 i 个台阶的最低花费为 dp[i]


2.当前台阶的最低花费与 i-1 和 i-2 台阶有关,应该是从( i-1 台阶最低消费+从 i-1 台阶向上爬的费用)和(i-2 台阶最低消费+从 i-2 台阶向上爬的费用) 中取较小值

d p [ i ] = m i n ( ( d p [ i − 1 ] + c o s t [ i − 1 ] ) , ( d p [ i − 2 ] + c o s t [ i − 2 ] ) )

初始值 dp[0]=0 dp[1]=0


显然从前往后


示例一应该是 dp[N]={0,0,10,15}


代码展示

class Solution
{
public:
    int minCostClimbingStairs(vector<int> &cost)
    {
        int N = cost.size() + 1;
        vector<int> dp(N);
        for (int i = 2; i < N; i++)
        {
            dp[i] = min((dp[i - 1] + cost[i - 1]), (dp[i - 2] + cost[i - 2]));
        }
        return dp[N-1];
    }
};


这题还是可以滚动数组优化

class Solution
{
public:
    int minCostClimbingStairs(vector<int> &cost)
    {
        int N = cost.size() + 1;
        vector<int> dp(2);
        int result;
        for (int i = 2; i < N; i++)
        {
            result = min((dp[1] + cost[i - 1]), (dp[0] + cost[i - 2]));
            dp[0] = dp[1];
            dp[1] = result;
        }
        return result;
    }
};
目录
相关文章
UE DTMqtt 虚幻引擎 Mqtt 客户端插件说明
UE DTMqtt 虚幻引擎 Mqtt 客户端插件说明
1017 0
|
负载均衡 安全 Java
深入了解Spring Cloud Gateway:构建高效微服务网关
Spring Cloud Gateway是一个强大的微服务网关,它在现代分布式架构中扮演着至关重要的角色。本文将深入介绍Spring Cloud Gateway的核心概念、功能和用途,以帮助您更好地理解和利用这一工具来构建高效的微服务应用。
|
10月前
|
SQL Java 关系型数据库
【📕分布式锁通关指南 01】从解决库存超卖开始加锁的初体验
本文通过电商场景中的库存超卖问题,深入探讨了JVM锁、MySQL悲观锁和乐观锁的实现及其局限性。首先介绍了单次访问下库存扣减逻辑的正常运行,但在高并发场景下出现了超卖问题。接着分析了JVM锁在多例模式、事务模式和集群模式下的失效情况,并提出了使用数据库锁机制(如悲观锁和乐观锁)来解决并发问题。 悲观锁通过`update`语句或`select for update`实现,能有效防止超卖,但存在锁范围过大、性能差等问题。乐观锁则通过版本号或时间戳实现,适合读多写少的场景,但也面临高并发写操作性能低和ABA问题。 最终,文章强调没有完美的方案,只有根据具体业务场景选择合适的锁机制。
350 12
【📕分布式锁通关指南 01】从解决库存超卖开始加锁的初体验
|
安全 网络安全 iOS开发
macOS系统安装NMAP扫描工具
macOS系统安装NMAP扫描工具
687 1
|
监控
zabbix利用grafana自定义监控图形展现(十一)
zabbix利用grafana实现监控图形展现 1.修改已有的system load监控图像 下面这张图是现在已经有的系统负载监控图,可以看到只有15分钟的负载并没有1分钟和5分钟的负载,我们现在修改一下图形,让他支持1分钟和5分钟的系统负载
2339 0
zabbix利用grafana自定义监控图形展现(十一)
|
存储 测试技术 API
BackTrader 中文文档(十一)(4)
BackTrader 中文文档(十一)
364 0
|
缓存 关系型数据库 MySQL
关系型数据库数据检索效率
【5月更文挑战第17天】
291 2
|
前端开发 小程序 测试技术
前端后端测试接口mork神器,Apifox使用一分钟入门
前端后端测试接口mork神器,Apifox使用一分钟入门
892 0
|
关系型数据库 MySQL 数据库
Win10安装两个不同版本MySQL数据库(一个5.7,一个8.0.17)
Win10安装两个不同版本MySQL数据库(一个5.7,一个8.0.17)
1397 0
Win10安装两个不同版本MySQL数据库(一个5.7,一个8.0.17)

热门文章

最新文章