《深入理解Hadoop(原书第2版)》——1.4大数据和事务性系统

简介:

本节书摘来自华章计算机《深入理解Hadoop(原书第2版)》一书中的第1章,第1.4节,作者 [美]萨米尔·瓦德卡(Sameer Wadkar),马杜·西德林埃(Madhu Siddalingaiah),杰森·文纳(Jason Venner),译 于博,冯傲风,更多章节内容可以访问云栖社区“华章计算机”公众号查看。

1.4大数据和事务性系统

以大数据作为参照来理解事务概念的发展变化是非常重要的。这个问题的讨论会涉及相应的NoSQL数据库。Hadoop系统使用HBase来作为自己的NoSQL数据存储。你也可以使用Cassandra或者云计算提供商(如Amazon Dynamo)的NoSQL系统来替代。

大多数的RDBMS使用者都要求数据库必须要遵守ACID准则,但是遵守这些准则是有系统代价的。当数据库后台需要处理峰值为每秒数百万次的事务操作的时候,要求苛刻地遵守ACID准则对数据库来说是个巨大的挑战。

ACID是atomicity(原子性)、consistency(一致性)、isolation(隔离性)和durability(持久性)的首字母简写。进一步详细讲解见:http://en.wikipedia.org/wiki/ACID

对苛刻的ACID准则做出妥协是必要的。做出妥协的理论依据就是著名的CAP理论(又称Brewer理论)。CAP理论是下面三点的首字母缩写:

  • Consistency(一致性):在分布式系统中的所有数据备份,在同一时刻有同样的值。
  • Availability(可用性):在合理且明确的时间内,保证每个请求都能获得成功或者失败的结果的响应。
  • Partition tolerance(分区容忍性): 在集群中一部分节点故障后,集群整体仍可使用。
  • 这个理论用来证明,任何分布式系统只能同时满足其中的两个特性,而无法三者兼顾。现在,让我们仔细地思考对比下面列出的各种系统:
  • 一致性和可用性:遵守ACID准则的单机RDBMS是兼顾一致性和可用性的系统的一个例子。但是不满足分区容忍性。如果这个RDBMS当机了,用户将无法访问数据。
  • 一致性和分区容忍性:一个RDBMS集群就是这样的系统。分布式事务保证了所有用户在同一时刻获取到相同的数据(一致性);数据的分布式存储天然地保证在集群部分节点故障的情况下,集群系统仍然可用。可是,分布式事务在满足系统一致性的同时,也有副作用,导致系统无法做到可用性,在两阶段提交事务执行期间,系统是不可用的。一致性限制了系统可以支持的同时执行的事务数量,反过来也影响到了系统的可用性。
  • 可用性和分区容忍性:本类别中这样的系统常常被归类为“最终一致性”系统。考虑一下流行的电子商务网站,比如亚马逊。假如你正在浏览商品目录,发现你需要的商品正好有货。在购买流程中很自然就可以想到,在你发现所需的商品有货并发起了购买请求这段时间内,其他人更早地进入并抢购了商品。所以有必要及时显示最新库存变化。库存变化将会广播到为用户提供服务的集群中的其他所有节点。为了给用户提供库存变化后的最新值,当商品库存变化后的数据在各个节点的传递还没有完成的时候,如果系统阻止了用户的访问,就会使网站丧失可用性,从而影响交易量。为了系统可用性和分区容忍性而牺牲系统一致性,我们选择这个折中来使多个节点为用户显示相同的数据(在一个小的时间窗内,用户看到的数据可能是不同的,这个时间窗的大小取决为用户提供服务的那个节点)。

如何做出折中选择,在大数据系统设计的时候是非常关键的。本书的主题MapReduce只是大数据生态环境中的一个组件。它常常与其他类似HBase这样的产品搭配使用,在选择不同产品配合使用的时候,在本章讲解的这些权衡中做出选择,是解决方案是否可行的关键。

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
2月前
|
存储 分布式计算 大数据
基于Python大数据的的电商用户行为分析系统
本系统基于Django、Scrapy与Hadoop技术,构建电商用户行为分析平台。通过爬取与处理海量用户数据,实现行为追踪、偏好分析与个性化推荐,助力企业提升营销精准度与用户体验,推动电商智能化发展。
|
3月前
|
数据可视化 搜索推荐 大数据
基于python大数据的北京旅游可视化及分析系统
本文深入探讨智慧旅游系统的背景、意义及研究现状,分析其在旅游业中的作用与发展潜力,介绍平台架构、技术创新、数据挖掘与服务优化等核心内容,并展示系统实现界面。
|
3月前
|
存储 数据可视化 数据挖掘
基于大数据的电影可视化、推荐与票房预测系统
本系统基于Python与Flask框架,结合Echarts等技术,实现电影数据的采集、存储与可视化展示。通过对票房、评分、评论等数据的分析,生成图表与词云,帮助用户直观理解电影市场趋势,支持决策制定与观影推荐,提升电影行业的数据分析能力与用户体验。
|
5月前
|
机器学习/深度学习 存储 分布式计算
ODPS驱动电商仓储革命:动态需求预测系统的落地实践
本方案基于ODPS构建“预测-仿真-决策”闭环系统,解决传统仓储中滞销积压与爆款缺货问题。通过动态特征工程、时空融合模型与库存仿真引擎,实现库存周转天数下降42%,缺货率下降65%,年损减少5000万以上,显著提升运营效率与GMV。
648 1
|
5月前
|
数据采集 搜索推荐 算法
大数据信息SEO优化系统软件
大数据信息SEO优化系统软件(V1.0)是公司基于“驱动企业价值持续增长”战略,针对企业网站、电商平台及内容营销场景深度定制的智能化搜索引擎优化解决方案。该软件以“提升搜索排名、精准引流获客”为核心目标,通过整合全网数据采集、智能关键词挖掘、内容质量分析、外链健康度监测等功能模块,为企业构建从数据洞察到策略落地的全链路SEO优化体系,助力品牌高效提升搜索引擎曝光度,实现从流量获取到商业转化的价值升级。
129 2
|
2月前
|
机器学习/深度学习 大数据 关系型数据库
基于python大数据的台风灾害分析及预测系统
针对台风灾害预警滞后、精度不足等问题,本研究基于Python与大数据技术,构建多源数据融合的台风预测系统。利用机器学习提升路径与强度预测准确率,结合Django框架实现动态可视化与实时预警,为防灾决策提供科学支持,显著提高应急响应效率,具有重要社会经济价值。
|
2月前
|
机器学习/深度学习 大数据 关系型数据库
基于python大数据的青少年网络使用情况分析及预测系统
本研究基于Python大数据技术,构建青少年网络行为分析系统,旨在破解现有防沉迷模式下用户画像模糊、预警滞后等难题。通过整合多平台亿级数据,运用机器学习实现精准行为预测与实时干预,推动数字治理向“数据驱动”转型,为家庭、学校及政府提供科学决策支持,助力青少年健康上网。

热门文章

最新文章