《数据分析实战:基于EXCEL和SPSS系列工具的实践》一2.1.2 术语

简介: 本节书摘来华章计算机《数据分析实战:基于EXCEL和SPSS系列工具的实践》一书中的第2章 ,第2.1.2节,纪贺元 著 更多章节内容可以访问云栖社区“华章计算机”公众号查看。 2.1.2 术语 如同数据分析的概念一样,数据分析的术语也非常多,以下我们挑选一些常用的术语给大家做一些介绍。

本节书摘来华章计算机《数据分析实战:基于EXCEL和SPSS系列工具的实践》一书中的第2章 ,第2.1.2节,纪贺元 著 更多章节内容可以访问云栖社区“华章计算机”公众号查看。

2.1.2 术语

如同数据分析的概念一样,数据分析的术语也非常多,以下我们挑选一些常用的术语给大家做一些介绍。
1.稳定性和波动性
稳定性和波动性是一对反义词,在数据分析的很多领域,我们都更关注数据的稳定性,比如,在工业生产领域,我们关心产品质量的稳定程度,都不希望产品质量一会儿好一会儿坏。同样,在教育领域,我们在评估教学质量时,不仅仅是关注相关指标的高低状况,也关注数据的稳定程度,例如学生对教学的评分忽高忽低,这里面一般是有问题的。关于数据的稳定性和波动性,在本书的第6章“数据扫描”中,有详细的叙述。
2.数据变形
在我们的工作中,经常会碰到数据中存在极值的情况,情况如图2-9所示。

image


在图2-9中,6月份的数据属于极大值,这个极大值的出现导致了其他月份的数据被大大压缩(压缩在0~10000的狭小区域中了),这使得这些数据之间的相互比较变得比较困难,例如9月份和11月份的数据谁大谁小,单凭肉眼比较难以判断。
在这种情况下,我们就在想,是否可以把上述的数据进行一个变形,既保留原来数据的基本特征,然后也让数据之间的对比变得比较容易?这个技术就是数据变形技术。
关于数据变形技术,会在第14章“高级绘图技巧”中详细阐述。
3.分类汇总
要讲清楚分类汇总,首先要理解什么是明细数据和概要数据,请看图2-10。


image


可以看到,图2-10是业务的明细数据,明细数据就是细节数据的体现,也就是说,产生了一条细节的统计数据,就记录下一条。不过在实际工作中,我们也经常关心汇总数据,例如我们往往关心:每周的销售数据是多少?每种销售渠道的销售数据是多少?这就是分类汇总数据。
4.数据透视
数据分析人员经常会说“这个数据要透视一下”,实际上就是用数据透视表的方式来看数据,虽然数据分析属于统计的范畴,但是EXCEL数据透视表在数据分析中使用的频率非常高。
5.相关分析
相关分析和关联分析是两个比较容易混淆的概念,不过都非常重要。相关分析反映的是在发生变动时,变量相互之间的“互动”关系,例如在增加销售投入时,我们会关心销售收入是否增长;或者在产品的成本上升时,我们关心产品的价格是否变动。
再强调一下,相关分析反映的是数据变动量之间的关系,而不是数据本身。
6.关联分析
关联分析在数据分析领域是一个特定的术语,这里先简单地介绍一下购物篮。大家都习惯了去超市时要拿一个购物篮或者推一个购物车,然后将要买的东西放在购物篮或者购物车里,那么超市的经营者往往会关心一个问题:顾客同时会购买什么东西?例如一个顾客购买了猪肉之后会不会买芹菜?买了牛奶之后会不会买鸡蛋?在知道了这些信息之后,超市的经营者能用来干什么呢?答案:他们可以做关联销售啊。如果知道顾客经常同时购买猪肉和芹菜,就可以做捆绑销售。
7.数据拟合
在解释这个概念之前,先看看案例文件2.6的数据,并且看看图2-11所示的销售收入和消费费用的散点图。


image


如果希望知道销售收入和销售费用之间的关系,怎么办呢?我们的统计学家很聪明,他们就会想办法找到一条曲线,这条曲线能够把上面的散点基本上都“串”起来,见图2-12数据拟合中的趋势线。
当然,这条曲线也有一个方程,找到这样的曲线及其方程的过程,就是曲线拟合。


image


8.假设检验
有人说,假设检验是统计学中的最基本的概念,个人基本表示认同,不过讲清楚假设检验,并不那么容易。
首先看一个生活中的例子,我们中的大部分人都是“外貌协会”的,看到相貌英俊的男人或者清秀美丽的女人,都会产生好感。不过帅哥美女一定是好人吗?未必!可能打过交道之后,你的印象会大大改观。
图2-13所示为人和人打交道的过程图,看到帅哥美女从而心生好感,就是“假设”,后面继续打交道,就是“检验”,合起来就是“假设检验”。

image


那么如何检验呢?
先做假设,如果检验的结果跟其假设一致或者相差不多,那么就肯定之前的假设;如果相差太大,例如,假设A是个好人,结果我们发现他表面上看起来不错(是个影帝),但是实际上品质很恶劣,那么就推翻假设,请见图2-14假设检验。

image

相关文章
|
机器学习/深度学习 人工智能 自然语言处理
如何构建企业级数据智能体:Data Agent 开发实践
本篇将介绍DMS的一款数据分析智能体(Data Agent for Analytics )产品的技术思考和实践。Data Agent for Analytics 定位为一款企业级数据分析智能体, 基于Agentic AI 技术,帮助用户查数据、做分析、生成报告、深入洞察。
|
6月前
|
SQL 分布式计算 数据挖掘
从Excel到高级工具:数据分析进阶指南
从Excel到高级工具:数据分析进阶指南
288 54
|
机器学习/深度学习 人工智能 自然语言处理
构建企业级数据分析助手:Data Agent 开发实践
本篇将介绍DMS的一款数据分析智能体(Data Agent for Analytics )产品的技术思考和实践。Data Agent for Analytics 定位为一款企业级数据分析智能体, 基于Agentic AI 技术,帮助用户查数据、做分析、生成报告、深入洞察。由于不同产品的演进路径,背景都不一样,所以只介绍最核心的部分,来深入剖析如何构建企业级数据分析助手:能力边界定义,技术内核,企业级能力。希望既能作为Data Agent for Analytics产品的技术核心介绍,也能作为读者的开发实践的参考。
520 1
构建企业级数据分析助手:Data Agent 开发实践
|
4月前
|
数据采集 数据可视化 搜索推荐
Python数据分析全流程指南:从数据采集到可视化呈现的实战解析
在数字化转型中,数据分析成为企业决策核心,而Python凭借其强大生态和简洁语法成为首选工具。本文通过实战案例详解数据分析全流程,涵盖数据采集、清洗、探索、建模、可视化及自动化部署,帮助读者掌握从数据到业务价值的完整技能链。
541 0
|
1月前
|
机器学习/深度学习 监控 数据挖掘
Python 高效清理 Excel 空白行列:从原理到实战
本文介绍如何使用Python的openpyxl库自动清理Excel中的空白行列。通过代码实现高效识别并删除无数据的行与列,解决文件臃肿、读取错误等问题,提升数据处理效率与准确性,适用于各类批量Excel清理任务。
314 0
|
3月前
|
供应链 监控 搜索推荐
35页PPT|零售行业自助数据分析方法论:指标体系构建平台集成、会员与商品精细化运营实践
在零售行业环境剧变的背景下,传统“人找货”模式正被“货找人”取代。消费者需求日益个性化,购买路径多元化,企业亟需构建统一的指标体系,借助BI平台实现数据驱动的精细化运营。本文从指标体系构建、平台集成到会员与商品运营实践,系统梳理零售经营分析的方法论,助力企业实现敏捷决策与业务闭环。
35页PPT|零售行业自助数据分析方法论:指标体系构建平台集成、会员与商品精细化运营实践
|
5月前
|
SQL 存储 缓存
基于 StarRocks + Iceberg,TRM Labs 构建 PB 级数据分析平台实践
从 BigQuery 到开放数据湖,区块链情报公司 TRM Labs 的数据平台演进实践
|
6月前
|
人工智能 算法 安全
使用CodeBuddy实现批量转换PPT、Excel、Word为PDF文件工具
通过 CodeBuddy 实现本地批量转换工具,让复杂的文档处理需求转化为 “需求描述→代码生成→一键运行” 的极简流程,真正实现 “技术为效率服务” 的目标。感兴趣的快来体验下把
253 10
|
6月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据分析,别再死磕Excel了!
Python数据分析,别再死磕Excel了!
275 2
|
7月前
|
SQL 自然语言处理 数据可视化
📊 Quick BI 真实体验评测:小白也能快速上手的数据分析工具!
作为一名软件开发工程师,我体验了阿里云的Quick BI工具。从申请试用账号到上传数据、创建数据集,再到搭建仪表板和使用智能小Q功能,整个过程流畅且简单易用。尤其对非专业数据分析人士来说,拖拽式设计和自然语言问数功能极大降低了操作门槛。虽然在试用入口明显度和复杂语义理解上还有提升空间,但整体体验令人满意。Quick BI让我改变了对数据分析的认知,值得推荐给需要快速制作报表的团队成员。

热门文章

最新文章