《Python爬虫开发与项目实战》——第3章 初识网络爬虫 3.1 网络爬虫概述

简介:

本节书摘来自华章计算机《Python爬虫开发与项目实战》一书中的第3章,第3.1节,作者:范传辉著,更多章节内容可以访问云栖社区“华章计算机”公众号查看

第3章 初识网络爬虫

  从本章开始,将正式涉及Python爬虫的开发。本章主要分为两个部分:一部分是网络爬虫的概述,帮助大家详细了解网络爬虫;另一部分是HTTP请求的Python实现,帮助大家了解Python中实现HTTP请求的各种方式,以便具备编写HTTP网络程序的能力。

3.1 网络爬虫概述

  本节正式进入Python爬虫开发的专题,接下来从网络爬虫的概念、用处与价值和结构等三个方面,让大家对网络爬虫有一个基本的了解。
3.1.1 网络爬虫及其应用
  随着网络的迅速发展,万维网成为大量信息的载体,如何有效地提取并利用这些信息成为一个巨大的挑战,网络爬虫应运而生。网络爬虫(又被称为网页蜘蛛、网络机器人),是一种按照一定的规则,自动地抓取万维网信息的程序或者脚本。下面通过图3-1展示一下网络爬虫在互联网中起到的作用:
  网络爬虫按照系统结构和实现技术,大致可以分为以下几种类型:通用网络爬虫、聚焦网络爬虫、增量式网络爬虫、深层网络爬虫。实际的网络爬虫系统通常是几种爬虫技术相结合实现的。
  搜索引擎(Search Engine),例如传统的通用搜索引擎baidu、Yahoo和Google等,是一种大型复杂的网络爬虫,属于通用性网络爬虫的范畴。但是通用性搜索引擎存在着一定的局限性:
  1)不同领域、不同背景的用户往往具有不同的检索目的和需求,通用搜索引擎所返回的结果包含大量用户不关心的网页。
screenshot

  2)通用搜索引擎的目标是尽可能大的网络覆盖率,有限的搜索引擎服务器资源与无限的网络数据资源之间的矛盾将进一步加深。
  3)万维网数据形式的丰富和网络技术的不断发展,图片、数据库、音频、视频多媒体等不同数据大量出现,通用搜索引擎往往对这些信息含量密集且具有一定结构的数据无能为力,不能很好地发现和获取。
  4)通用搜索引擎大多提供基于关键字的检索,难以支持根据语义信息提出的查询。
  为了解决上述问题,定向抓取相关网页资源的聚焦爬虫应运而生。
  聚焦爬虫是一个自动下载网页的程序,它根据既定的抓取目标,有选择地访问万维网上的网页与相关的链接,获取所需要的信息。与通用爬虫不同,聚焦爬虫并不追求大的覆盖,而将目标定为抓取与某一特定主题内容相关的网页,为面向主题的用户查询准备数据资源。
  说完了聚焦爬虫,接下来再说一下增量式网络爬虫。增量式网络爬虫是指对已下载网页采取增量式更新和只爬行新产生的或者已经发生变化网页的爬虫,它能够在一定程度上保证所爬行的页面是尽可能新的页面。和周期性爬行和刷新页面的网络爬虫相比,增量式爬虫只会在需要的时候爬行新产生或发生更新的页面,并不重新下载没有发生变化的页面,可有效减少数据下载量,及时更新已爬行的网页,减小时间和空间上的耗费,但是增加了爬行算法的复杂度和实现难度。例如:想获取赶集网的招聘信息,以前爬取过的数据没有必要重复爬取,只需要获取更新的招聘数据,这时候就要用到增量式爬虫。
  最后说一下深层网络爬虫。Web页面按存在方式可以分为表层网页和深层网页。表层网页是指传统搜索引擎可以索引的页面,以超链接可以到达的静态网页为主构成的Web页面。深层网络是那些大部分内容不能通过静态链接获取的、隐藏在搜索表单后的,只有用户提交一些关键词才能获得的Web页面。例如用户登录或者注册才能访问的页面。可以想象这样一个场景:爬取贴吧或者论坛中的数据,必须在用户登录后,有权限的情况下才能获取完整的数据。
  本书除了通用性爬虫不会涉及之外,聚焦爬虫、增量式爬虫和深层网络爬虫的具体运用都会进行讲解。下面展示一下网络爬虫实际运用的一些场景:
  1)常见的BT网站,通过爬取互联网的DHT网络中分享的BT种子信息,提供对外搜索服务。如图3-2所示。
screenshot

  2)一些云盘搜索网站,通过爬取用户共享出来的云盘文件数据,对文件数据进行分类划分,从而提供对外搜索服务。如图3-3所示。
screenshot

3.1.2 网络爬虫结构
  下面用一个通用的网络爬虫结构来说明网络爬虫的基本工作流程,如图3-4所示。
screenshot

  网络爬虫的基本工作流程如下:
  1)首先选取一部分精心挑选的种子URL。
  2)将这些URL放入待抓取URL队列。
  3)从待抓取URL队列中读取待抓取队列的URL,解析DNS,并且得到主机的IP,并将URL对应的网页下载下来,存储进已下载网页库中。此外,将这些URL放进已抓取URL队列。
  4)分析已抓取URL队列中的URL,从已下载的网页数据中分析出其他URL,并和已抓取的URL进行比较去重,最后将去重过的URL放入待抓取URL队列,从而进入下一个循环。
  这便是一个基本的通用网络爬虫框架及其工作流程,在之后的章节我们会用Python实现这种网络爬虫结构。

相关文章
|
15天前
|
数据采集 存储 XML
Python爬虫定义入门知识
Python爬虫是用于自动化抓取互联网数据的程序。其基本概念包括爬虫、请求、响应和解析。常用库有Requests、BeautifulSoup、Scrapy和Selenium。工作流程包括发送请求、接收响应、解析数据和存储数据。注意事项包括遵守Robots协议、避免过度请求、处理异常和确保数据合法性。Python爬虫强大而灵活,但使用时需遵守法律法规。
|
12天前
|
存储 数据库连接 API
Python环境变量在开发和运行Python应用程序时起着重要的作用
Python环境变量在开发和运行Python应用程序时起着重要的作用
57 15
|
16天前
|
数据采集 缓存 定位技术
网络延迟对Python爬虫速度的影响分析
网络延迟对Python爬虫速度的影响分析
|
17天前
|
数据采集 Web App开发 监控
高效爬取B站评论:Python爬虫的最佳实践
高效爬取B站评论:Python爬虫的最佳实践
|
17天前
|
Python
Python中的异步编程:使用asyncio和aiohttp实现高效网络请求
【10月更文挑战第34天】在Python的世界里,异步编程是提高效率的利器。本文将带你了解如何使用asyncio和aiohttp库来编写高效的网络请求代码。我们将通过一个简单的示例来展示如何利用这些工具来并发地处理多个网络请求,从而提高程序的整体性能。准备好让你的Python代码飞起来吧!
41 2
|
19天前
|
JSON 安全 API
如何使用Python开发API接口?
在现代软件开发中,API(应用程序编程接口)用于不同软件组件之间的通信和数据交换,实现系统互操作性。Python因其简单易用和强大功能,成为开发API的热门选择。本文详细介绍了Python开发API的基础知识、优势、实现方式(如Flask和Django框架)、实战示例及注意事项,帮助读者掌握高效、安全的API开发技巧。
43 3
如何使用Python开发API接口?
|
2天前
|
数据采集 XML 存储
构建高效的Python网络爬虫:从入门到实践
本文旨在通过深入浅出的方式,引导读者从零开始构建一个高效的Python网络爬虫。我们将探索爬虫的基本原理、核心组件以及如何利用Python的强大库进行数据抓取和处理。文章不仅提供理论指导,还结合实战案例,让读者能够快速掌握爬虫技术,并应用于实际项目中。无论你是编程新手还是有一定基础的开发者,都能在这篇文章中找到有价值的内容。
|
12天前
|
JSON API 数据格式
如何使用Python开发1688商品详情API接口?
本文介绍了如何使用Python开发1688商品详情API接口,获取商品的标题、价格、销量和评价等详细信息。主要内容包括注册1688开放平台账号、安装必要Python模块、了解API接口、生成签名、编写Python代码、解析返回数据以及错误处理和日志记录。通过这些步骤,开发者可以轻松地集成1688商品数据到自己的应用中。
27 1
|
13天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
45 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
17天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
39 3

热门文章

最新文章

下一篇
无影云桌面