1.问题
其实这是分库分表之后你必然要面对的一个问题,就是id咋生成?因为要是分成多个表之后,每个表都是从1开始累加,那肯定不对啊,需要一个全局唯一的id来支持。所以这都是你实际生产环境中必须考虑的问题。
2.生成方案
(1)数据库自增id方案
原理 :这个就是说你的系统里每次得到一个id,都是往一个库的一个表里插入一条没什么业务含义的数据,然后获取一个数据库自增的一个id。拿到这个id之后再往对应的分库分表里去写入。
优点 : 操作简单。
缺点 :单库生成自增id,如果是高并发,就会有瓶颈。
适合的场景:你分库分表就俩原因,要不就是单库并发太高,要不就是单库数据量太大;除非是你并发不高,但是数据量太大导致的分库分表扩容,你可以用这个方案,因为可能每秒最高并发最多就几百,那么就走单独的一个库和表生成自增主键即可。
改进 :可以给每个表指定不一样的自增主键起始值,然后按照表的数据去自增,比如有三个表,分别指定自增主键起始值为1、2、3,然后按照一次增加3的方式取增长,这样数据库1的id就是1、4、7、10.....,数据库2的id就是2、5、8、11......,数据库3的id就是3、6、9、12,这样就可以不依赖单点数据库。
(2)UUID方案
原理 :使用UUID去生成,保证唯一性。
优点 :本地生成,不基于数据库,速度快不存在并发瓶颈。
缺点 :UUID太长,作为主键性能太差了。
适用场景 :如果你是要随机生成个什么文件名了,编号之类的,你可以用uuid,但是作为主键是不能用uuid的。
(3)使用当前时间方案**
原理 :获取当前时间的时间戳来作为id。
优点 :简单。
缺点 :高并发的时候,会存在重复的情况。
适用场景 :这个级别就不适用,不考虑。
改进 :一般如果用这个方案,是将当前时间跟很多其他的业务字段拼接起来,作为一个id,如果业务上你觉得可以接受,那么也是可以的。你可以将别的业务字段值跟当前时间拼接起来,组成一个全局唯一的编号,订单编号,时间戳 + 用户id + 业务含义编码。
(4)snowflake算法
Twitter开源的分布式id生成算法,就是把一个64位的long型的id,第一个bit是不使用的,保证获得是一个正数;然后用后面的41个bit作为当前的毫秒数;用其后的10bit作为工作机器的id;最后的12个bit作为序列化。
- 1 bit:不用,为啥呢?因为二进制里第一个bit为如果是1,那么都是负数,但是我们生成的id都是正数,所以第一个bit统一都是0
- 41 bit:表示的是时间戳,单位是毫秒。41 bit可以表示的数字多达2^41 - 1,也就是可以标识2 ^ 41 - 1个毫秒值,换算成年就是表示69年的时间。
- 10 bit:记录工作机器id,代表的是这个服务最多可以部署在2^10台机器上哪,也就是1024台机器。但是10 bit里5个bit代表机房id,5个bit代表机器id。意思就是最多代表2 ^ 5个机房(32个机房),每个机房里可以代表2 ^ 5个机器(32台机器)。
- 12 bit:这个是用来记录同一个毫秒内产生的不同id,12 bit可以代表的最大正整数是2 ^ 12 - 1 = 4096,也就是说可以用这个12bit代表的数字来区分同一个毫秒内的4096个不同的id
64位的long型的id,64位的long -> 二进制
0 | 0001100 10100010 10111110 10001001 01011100 00 | 10001 | 1 1001 | 0000 00000000
2018-01-01 10:00:00 -> 做了一些计算,再换算成一个二进制,41bit来放 -> 0001100 10100010 10111110 10001001 01011100 00
机房id,17 -> 换算成一个二进制 -> 10001
机器id,25 -> 换算成一个二进制 -> 11001
snowflake算法服务,会判断一下,当前这个请求是否是,机房17的机器25,在2175/11/7 12:12:14时间点发送过来的第一个请求,如果是第一个请求,那么序列号就是000000000000
假设,在2175/11/7 12:12:14时间里,机房17的机器25,发送了第二条消息,snowflake算法服务,会发现说机房17的机器25,在2175/11/7 12:12:14时间里,在这一毫秒,之前已经生成过一个id了,此时如果你同一个机房,同一个机器,在同一个毫秒内,再次要求生成一个id,此时我只能把加1
0 | 0001100 10100010 10111110 10001001 01011100 00 | 10001 | 1 1001 | 0000 00000001
比如我们来观察上面的那个,就是一个典型的二进制的64位的id,换算成10进制就是910499571847892992。
大概这个意思就是说41 bit,就是当前毫秒单位的一个时间戳,就这意思;然后5 bit是你传递进来的一个机房id(但是最大只能是32以内),5 bit是你传递进来的机器id(但是最大只能是32以内),剩下的那个10 bit序列号,就是如果跟你上次生成id的时间还在一个毫秒内,那么会把顺序给你累加,最多在4096个序号以内。
所以你自己利用这个工具类,自己搞一个服务,然后对每个机房的每个机器都初始化这么一个东西,刚开始这个机房的这个机器的序号就是0。然后每次接收到一个请求,说这个机房的这个机器要生成一个id,你就找到对应的Worker,生成。
他这个算法生成的时候,会把当前毫秒放到41 bit中,然后5 bit是机房id,5 bit是机器id,接着就是判断上一次生成id的时间如果跟这次不一样,序号就自动从0开始;要是上次的时间跟现在还是在一个毫秒内,他就把seq累加1,就是自动生成一个毫秒的不同的序号。
这个算法那,可以确保说每个机房每个机器每一毫秒,最多生成4096个不重复的id。
利用这个snowflake算法,你可以开发自己公司的服务,甚至对于机房id和机器id,反正给你预留了5 bit + 5 bit,你换成别的有业务含义的东西也可以的。
这个snowflake算法相对来说还是比较靠谱的,所以你要真是搞分布式id生成,如果是高并发啥的,那么用这个应该性能比较好,一般每秒几万并发的场景,也足够你用了。
publicclassIdWorker{ privatelongworkerId; privatelongdatacenterId; privatelongsequence; publicIdWorker(longworkerId, longdatacenterId, longsequence){ // sanity check for workerId// 这儿不就检查了一下,要求就是你传递进来的机房id和机器id不能超过32,不能小于0if (workerId>maxWorkerId||workerId<0) { thrownewIllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0",maxWorkerId)); } if (datacenterId>maxDatacenterId||datacenterId<0) { thrownewIllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0",maxDatacenterId)); } System.out.printf("worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d", timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId); this.workerId=workerId; this.datacenterId=datacenterId; this.sequence=sequence; } privatelongtwepoch=1288834974657L; privatelongworkerIdBits=5L; privatelongdatacenterIdBits=5L; privatelongmaxWorkerId=-1L^ (-1L<<workerIdBits); // 这个是二进制运算,就是5 bit最多只能有31个数字,也就是说机器id最多只能是32以内privatelongmaxDatacenterId=-1L^ (-1L<<datacenterIdBits); // 这个是一个意思,就是5 bit最多只能有31个数字,机房id最多只能是32以内privatelongsequenceBits=12L; privatelongworkerIdShift=sequenceBits; privatelongdatacenterIdShift=sequenceBits+workerIdBits; privatelongtimestampLeftShift=sequenceBits+workerIdBits+datacenterIdBits; privatelongsequenceMask=-1L^ (-1L<<sequenceBits); privatelonglastTimestamp=-1L; publiclonggetWorkerId(){ returnworkerId; } publiclonggetDatacenterId(){ returndatacenterId; } publiclonggetTimestamp(){ returnSystem.currentTimeMillis(); } publicsynchronizedlongnextId() { // 这儿就是获取当前时间戳,单位是毫秒longtimestamp=timeGen(); if (timestamp<lastTimestamp) { System.err.printf("clock is moving backwards. Rejecting requests until %d.", lastTimestamp); thrownewRuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp-timestamp)); } // 0// 在同一个毫秒内,又发送了一个请求生成一个id,0 -> 1if (lastTimestamp==timestamp) { sequence= (sequence+1) &sequenceMask; // 这个意思是说一个毫秒内最多只能有4096个数字,无论你传递多少进来,这个位运算保证始终就是在4096这个范围内,避免你自己传递个sequence超过了4096这个范围if (sequence==0) { timestamp=tilNextMillis(lastTimestamp); } } else { sequence=0; } // 这儿记录一下最近一次生成id的时间戳,单位是毫秒lastTimestamp=timestamp; // 这儿就是将时间戳左移,放到41 bit那儿;将机房id左移放到5 bit那儿;将机器id左移放到5 bit那儿;将序号放最后10 bit;最后拼接起来成一个64 bit的二进制数字,转换成10进制就是个long型return ((timestamp-twepoch) <<timestampLeftShift) | (datacenterId<<datacenterIdShift) | (workerId<<workerIdShift) |sequence; } privatelongtilNextMillis(longlastTimestamp) { longtimestamp=timeGen(); while (timestamp<=lastTimestamp) { timestamp=timeGen(); } returntimestamp; } privatelongtimeGen(){ returnSystem.currentTimeMillis(); } //---------------测试---------------publicstaticvoidmain(String[] args) { IdWorkerworker=newIdWorker(1,1,1); for (inti=0; i<30; i++) { System.out.println(worker.nextId()); } } }