《Aidlux智慧安防AI实战训练营》作业心得

简介: 智慧安防实战训练营的课程:AidLux智慧安防AI实战训练营活动正式开启可以做相关的只是扩充,同时学习AidLux的使用,将安卓手机利用起来。

1 训练营课程链接

智慧安防实战训练营的课程:AidLux智慧安防AI实战训练营活动正式开启

可以做相关的只是扩充,同时学习AidLux的使用,将安卓手机利用起来。
2 作业题目

(1)题目:

在学习了越界识别的功能后,采用人体检测+人体追踪+业务功能的方式实现 人流统计。

(2)实现效果:
https://zhuanlan.zhihu.com/p/578560984
(3)代码实现:

其它相关内容关注AidLux公众号回复lesson1、lesson2...、lesson5即可下载,下边的是lesson5的内容

# aidlux相关
from cvs import *
import aidlite_gpu
# from utils import detect_postprocess, preprocess_img, draw_detect_res, scale_coords,process_points,isInsidePolygon,is_in_poly
from utils import detect_postprocess, preprocess_img, draw_detect_res, scale_coords,process_points,is_in_poly,is_passing_line
import cv2
# bytetrack
from track.tracker.byte_tracker import BYTETracker
from track.utils.visualize import plot_tracking
import requests
import time


# 加载模型
model_path = '/home/lesson4_codes/aidlux/yolov5n_best-fp16.tflite'
in_shape = [1 * 640 * 640 * 3 * 4]
out_shape = [1 * 25200 * 6 * 4]

# 载入模型
aidlite = aidlite_gpu.aidlite()
# 载入yolov5检测模型
aidlite.ANNModel(model_path, in_shape, out_shape, 4, 0)

tracker = BYTETracker(frame_rate=30)
track_id_status = {}
cap = cvs.VideoCapture("/home/lesson4_codes/aidlux/video.mp4")
frame_id = 0
count_person = 0
while True:
    frame = cap.read()
    if frame is None:
        continue
    frame_id += 1
    if frame_id % 3 != 0:
        continue
     # 预处理
    img = preprocess_img(frame, target_shape=(640, 640), div_num=255, means=None, stds=None)
    # 数据转换:因为setTensor_Fp32()需要的是float32类型的数据,所以送入的input的数据需为float32,大多数的开发者都会忘记将图像的数据类型转换为float32
    aidlite.setInput_Float32(img, 640, 640)
    # 模型推理API
    aidlite.invoke()
    # 读取返回的结果
    pred = aidlite.getOutput_Float32(0)
    # 数据维度转换
    pred = pred.reshape(1, 25200, 6)[0]
    # 模型推理后处理
    pred = detect_postprocess(pred, frame.shape, [640, 640, 3], conf_thres=0.4, iou_thres=0.45)
    # 绘制推理结果
    res_img = draw_detect_res(frame, pred)

    # 目标追踪相关功能
    det = []
    # Process predictions
    for box in pred[0]:  # per image
        box[2] += box[0]
        box[3] += box[1]
        det.append(box)
    if len(det):
        # Rescale boxes from img_size to im0 size
        online_targets = tracker.update(det, [frame.shape[0], frame.shape[1]])
        online_tlwhs = []
        online_ids = []
        online_scores = []
        # 取出每个目标的追踪信息
        for t in online_targets:
            # 目标的检测框信息
            tlwh = t.tlwh
            # 目标的track_id信息
            tid = t.track_id
            online_tlwhs.append(tlwh)
            online_ids.append(tid)
            online_scores.append(t.score)
            # 针对目标绘制追踪相关信息
            res_img = plot_tracking(res_img, online_tlwhs, online_ids, 0,0)



            ### 人流量统计功能实现 ###
            # 1.绘制统计人流线
            lines = [[186,249],[1235,366]]
            cv2.line(res_img,(186,249),(1235,366),(255,255,0),3)

            # 2.计算得到人体下方中心点的位置(人体检测监测点调整)
            pt = [tlwh[0]+1/2*tlwh[2],tlwh[1]+tlwh[3]]

            # 3. 人体和违规区域的判断(人体状态追踪判断)
            track_info = is_passing_line(pt, lines)
            if tid not in track_id_status.keys():
                track_id_status.update( {tid:[track_info]})
            else:
                if track_info != track_id_status[tid][-1]:
                    track_id_status[tid].append(track_info)


            # 4. 判断是否有track_id越界,有的话保存成图片
            # 当某个track_id的状态,上一帧是-1,但是这一帧是1时,说明越界了
            if track_id_status[tid][-1] == 1 and len(track_id_status[tid]) >1:
                # 判断上一个状态是否是-1,是否的话说明越界,为了防止继续判别,随机的赋了一个3的值
                if  track_id_status[tid][-2] == -1:
                    track_id_status[tid].append(3)
                    # cv2.imwrite("overstep.jpg",res_img)
                    count_person += 1


    cv2.putText(res_img,"-1 to 1 person_count:"+str(count_person),(50,50),cv2.FONT_HERSHEY_SIMPLEX,1,(255,0,255),2)
    cvs.imshow(res_img)

    if count_person>10:
        # 5.越界识别+喵提醒
        # 填写对应的喵码 公众号关注喵提醒,注册账号,然后首页创建,填好标题,其它默认,再将喵码填到下边
        id = 'xxxx'
        # 填写喵提醒中,发送的消息,这里放上前面提到的图片外链
        text = "人流统计数:" + str(count_person)
        ts = str(time.time())  # 时间戳
        type = 'json'  # 返回内容格式
        request_url = "http://miaotixing.com/trigger?"
        headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.67 Safari/537.36 Edg/87.0.664.47'}
        result = requests.post(request_url + "id=" + id + "&text=" + text + "&ts=" + ts + "&type=" + type,headers=headers)

3 学习心得&使用心得

AidLux安卓版本兼容还需要继续加强,我的vivo手机重装了四遍才能使用的[狗头];目前使用vscode ssh连接到AidLux也还存在断线和版本配置问题。不过能利用起家里的旧手机也还不错,使用AidLux开发一些小的应用程序还不错,基本在本地调试完稍作修改即可。

相关文章
|
1月前
|
存储 人工智能 搜索推荐
解锁AI新境界:LangChain+RAG实战秘籍,让你的企业决策更智能,引领商业未来新潮流!
【10月更文挑战第4天】本文通过详细的实战演练,指导读者如何在LangChain框架中集成检索增强生成(RAG)技术,以提升大型语言模型的准确性与可靠性。RAG通过整合外部知识源,已在生成式AI领域展现出巨大潜力。文中提供了从数据加载到创建检索器的完整步骤,并探讨了RAG在企业问答系统、决策支持及客户服务中的应用。通过构建知识库、选择合适的嵌入模型及持续优化系统,企业可以充分利用现有数据,实现高效的商业落地。
86 6
|
28天前
|
存储 人工智能 分布式计算
Parquet 文件格式详解与实战 | AI应用开发
Parquet 是一种列式存储文件格式,专为大规模数据处理设计,广泛应用于 Hadoop 生态系统及其他大数据平台。本文介绍 Parquet 的特点和作用,并演示如何在 Python 中使用 Pandas 库生成和读取 Parquet 文件,包括环境准备、生成和读取文件的具体步骤。【10月更文挑战第13天】
221 60
|
27天前
|
人工智能 资源调度 数据可视化
【AI应用落地实战】智能文档处理本地部署——可视化文档解析前端TextIn ParseX实践
2024长沙·中国1024程序员节以“智能应用新生态”为主题,吸引了众多技术大咖。合合信息展示了“智能文档处理百宝箱”的三大工具:可视化文档解析前端TextIn ParseX、向量化acge-embedding模型和文档解析测评工具markdown_tester,助力智能文档处理与知识管理。
|
1月前
|
机器学习/深度学习 人工智能 开发框架
解锁AI新纪元:LangChain保姆级RAG实战,助你抢占大模型发展趋势红利,共赴智能未来之旅!
【10月更文挑战第4天】本文详细介绍检索增强生成(RAG)技术的发展趋势及其在大型语言模型(LLM)中的应用优势,如知识丰富性、上下文理解和可解释性。通过LangChain框架进行实战演练,演示从知识库加载、文档分割、向量化到构建检索器的全过程,并提供示例代码。掌握RAG技术有助于企业在问答系统、文本生成等领域把握大模型的红利期,应对检索效率和模型融合等挑战。
160 14
|
18天前
|
机器学习/深度学习 人工智能 算法
AI赋能大学计划·大模型技术与应用实战学生训练营——吉林大学站圆满结营
10月30日,由中国软件行业校园招聘与实习公共服务平台携手魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行AIGC项目实战营·吉林大学站圆满结营。
|
1月前
|
机器学习/深度学习 数据采集 人工智能
【紧跟AI浪潮】深度剖析:如何在大模型时代精准捕获用户心声——提高召回率的实战秘籍
【10月更文挑战第5天】在深度学习领域,大型模型常面临召回率不足的问题,尤其在信息检索和推荐系统中尤为关键。本文通过具体代码示例,介绍如何提升大模型召回率。首先,利用Pandas进行数据预处理,如清洗和特征工程;其次,选择合适的模型架构,如使用PyTorch构建推荐系统;再者,优化训练策略,采用合适的损失函数及正则化技术;此外,选择恰当的评估指标,如召回率和F1分数;最后,通过后处理优化结果展示。以上方法不仅提升召回率,还增强了模型整体性能。
75 0
|
3月前
|
数据采集 人工智能 安全
AI大数据处理与分析实战--体育问卷分析
本文是关于使用AI进行大数据处理与分析的实战案例,详细记录了对深圳市义务教育阶段学校“每天一节体育课”网络问卷的分析过程,包括数据概览、交互Prompt、代码处理、年级和学校维度的深入分析,以及通过AI工具辅助得出的分析结果和结论。
|
3月前
|
人工智能
|
3月前
|
数据采集 人工智能 物联网
我们给大模型去掉了“AI味”-大模型微调全链路实战
本文档旨在概述使用ModelScope生态进行LLM训练的全链路最佳实践,涵盖数据下载、数据预处理、模型训练、模型评估完整流程。
|
3月前
|
SQL 人工智能 SEO

热门文章

最新文章

下一篇
无影云桌面