为什么各大厂自研的内存泄漏检测框架都要参考 LeakCanary?因为它是真强啊!(下)

简介: 为什么各大厂自研的内存泄漏检测框架都要参考 LeakCanary?因为它是真强啊!(下)

6.2 LeakCanary 初始化过程分析


LeakCanary 的初始化工程可以概括为 2 项内容:


  • 1、初始化 LeakCanary 内部分析引擎;


  • 2、在 Android Framework 上注册五种 Android 泄漏场景的监控。

AppWathcer.kt


// LeakCanary 初始化 API
@JvmOverloads
fun manualInstall(
    application: Application,
    retainedDelayMillis: Long = TimeUnit.SECONDS.toMillis(5),
    watchersToInstall: List<InstallableWatcher> = appDefaultWatchers(application)
) {
    checkMainThread()
    ...
    // 初始化 InternalLeakCanary 内部引擎 (已简化为等价代码,后文会提到)
    InternalLeakCanary(application)
    // 注册五种 Android 泄漏场景的监控 Hook 点
    watchersToInstall.forEach {
        it.install()
    }
}
fun appDefaultWatchers(
    application: Application,
    reachabilityWatcher: ReachabilityWatcher = objectWatcher
): List<InstallableWatcher> {
    // 对应 5 种 Android 泄漏场景(后文具体分析)
    return listOf(
        ActivityWatcher(application, reachabilityWatcher),
        FragmentAndViewModelWatcher(application, reachabilityWatcher),
        RootViewWatcher(reachabilityWatcher),
        ServiceWatcher(reachabilityWatcher)
    )
}
复制代码

下面展开具体分析:


初始化内容 1 - 初始化 LeakCanary 内部分析引擎: 创建 HeapDumpTrigger 触发器,并在 Android Framework 上注册前后台切换监听、前台 Activity 监听和 ObjectWatcher 的泄漏监听。


InternalLeakCanary.kt


override fun invoke(application: Application) {
    _application = application
    // 1. 检查是否运行在 debug 构建变体,否则抛出异常
    checkRunningInDebuggableBuild()
    // 2. 注册泄漏回调,在 ObjectWathcer 判定对象发生泄漏会后回调 onObjectRetained() 方法
    AppWatcher.objectWatcher.addOnObjectRetainedListener(this)
    // 3. 垃圾回收触发器(用于调用 Runtime.getRuntime().gc())
    val gcTrigger = GcTrigger.Default
    // 4. 配置提供器
    val configProvider = { LeakCanary.config }
    // 5. (主角) 创建 HeapDump 触发器
    heapDumpTrigger = HeapDumpTrigger(...)
    // 6. App 前后台切换监听
    application.registerVisibilityListener { applicationVisible ->
        this.applicationVisible = applicationVisible
        heapDumpTrigger.onApplicationVisibilityChanged(applicationVisible)
    }
    // 7. 前台 Activity 监听(用于发送 Heap Dump 进行中的全局 Toast)
    registerResumedActivityListener(application)
    // 8. 增加可视化分析报告的桌面快捷入口
    addDynamicShortcut(application)
}
override fun onObjectRetained() = scheduleRetainedObjectCheck()
fun scheduleRetainedObjectCheck() {
    heapDumpTrigger.scheduleRetainedObjectCheck()
}
复制代码

HeapDumpTrigger.kt


// App 前后台切换状态变化回调
fun onApplicationVisibilityChanged(applicationVisible: Boolean) {
    if (applicationVisible) {
        // App 可见
        applicationInvisibleAt = -1L
    } else {
        // App 不可见
        applicationInvisibleAt = SystemClock.uptimeMillis()
        scheduleRetainedObjectCheck(delayMillis = AppWatcher.retainedDelayMillis)
    } 
}
fun scheduleRetainedObjectCheck(delayMillis: Long = 0L) {
    // 已简化:源码此处使用时间戳拦截,避免重复 postDelayed
    backgroundHandler.postDelayed({
        checkScheduledAt = 0
        checkRetainedObjects()
    }, delayMillis)
}
复制代码



初始化内容 2 - 在 Android Framework 中注入对五种 Android 泄漏场景的监控: 实现在对象的使用生命周期结束后,自动将对象交给 ObjectWatcher 进行监控。

以下为 5 种 Android 泄漏场景的监控原理分析:


  • 1、Activity 监控: 通过 Application#registerActivityLifecycleCallbacks(…) 接口监听 Activity#onDestroy 事件,将当前 Activity 对象交给 ObjectWatcher 监控;

ActivityWatcher.kt


private val lifecycleCallbacks = object : Application.ActivityLifecycleCallbacks by noOpDelegate() {
    override fun onActivityDestroyed(activity: Activity) {
        // reachabilityWatcher 即 ObjectWatcher
        reachabilityWatcher.expectWeaklyReachable(activity /*被监控对象*/, "${activity::class.java.name} received Activity#onDestroy() callback")
    }
}
复制代码


  • 2、Fragment 与 Fragment View 监控: 通过 FragmentAndViewModelWatcher 实现,首先是通过 Application#registerActivityLifecycleCallbacks(…) 接口监听 Activity#onCreate 事件,再通过 FragmentManager#registerFragmentLifecycleCallbacks(…) 接口监听 Fragment 的生命周期:


FragmentAndViewModelWatcher.kt


// fragmentDestroyWatchers 是一个 Lambda 表达式数组
// 对应原生、AndroidX 和 Support 三个版本 Fragment 的 Hook 工具
private val fragmentDestroyWatchers: List<(Activity) -> Unit> = 略...
private val lifecycleCallbacks = object : Application.ActivityLifecycleCallbacks by noOpDelegate() {
    override fun onActivityCreated(activity: Activity, savedInstanceState: Bundle?) {
        for (watcher in fragmentDestroyWatchers) {
            // 最终调用到下文的 invokde() 方法
            watcher(activity)
        }
    }
}
复制代码


以 AndroidX Fragment 为例:

AndroidXFragmentDestroyWatcher.kt


override fun invoke(activity: Activity) {
    // 这里在 Activity#onCreate 状态执行:
    if (activity is FragmentActivity) {
        val supportFragmentManager = activity.supportFragmentManager
        // 注册 Fragment 生命周期监听
        supportFragmentManager.registerFragmentLifecycleCallbacks(fragmentLifecycleCallbacks, true)
        // 注册 Activity 级别 ViewModel Hook
        ViewModelClearedWatcher.install(activity, reachabilityWatcher)
    }
}
private val fragmentLifecycleCallbacks = object : FragmentManager.FragmentLifecycleCallbacks() {
    override fun onFragmentCreated(fm: FragmentManager, fragment: Fragment, savedInstanceState: Bundle?) {
        // 注册 Fragment 级别 ViewModel Hook
        ViewModelClearedWatcher.install(fragment, reachabilityWatcher)
    }
    override fun onFragmentViewDestroyed(fm: FragmentManager, fragment: Fragment) {
        // reachabilityWatcher 即 ObjectWatcher
        reachabilityWatcher.expectWeaklyReachable(fragment.view /*被监控对象*/, "${fragment::class.java.name} received Fragment#onDestroyView() callback " + "(references to its views should be cleared to prevent leaks)")
    }
    override fun onFragmentDestroyed(fm: FragmentManager, fragment: Fragment) {
        // reachabilityWatcher 即 ObjectWatcher
        reachabilityWatcher.expectWeaklyReachable(fragment /*被监控对象*/, "${fragment::class.java.name} received Fragment#onDestroy() callback")
    }
}
复制代码


  • 3、ViewModel 监控: 由于 Android Framework 未提供设置 ViewModel#onClear() 全局监听的方法,所以 LeakCanary 是通过 Hook 的方式实现。即:在 Activity#onCreate 和 Fragment#onCreate 事件中实例化一个自定义ViewModel,在进入 ViewModel#onClear() 方法时,通过反射获取当前作用域中所有的 ViewModel 对象交给 ObjectWatcher 监控。

ViewModelClearedWatcher.kt


// ViewModel 的子类
internal class ViewModelClearedWatcher(
    storeOwner: ViewModelStoreOwner,
    private val reachabilityWatcher: ReachabilityWatcher
) : ViewModel() {
    // 反射获取 ViewModelStore 中的 ViewModel 映射表,即可获取当前作用域所有 ViewModel 对象
    private val viewModelMap: Map<String, ViewModel>? = try {
        val mMapField = ViewModelStore::class.java.getDeclaredField("mMap")
        mMapField.isAccessible = true
        mMapField[storeOwner.viewModelStore] as Map<String, ViewModel>
    } catch (ignored: Exception) {
        null
    }
    override fun onCleared() {
        // 遍历当前作用域所有 ViewModel 对象
        viewModelMap?.values?.forEach { viewModel ->
            // reachabilityWatcher 即 ObjectWatcher
            reachabilityWatcher.expectWeaklyReachable(viewModel /*被监控对象*/, "${viewModel::class.java.name} received ViewModel#onCleared() callback")
        }
    }
    companion object {
        // 直接在 storeOwner 作用域实例化 ViewModelClearedWatcher 对象
        fun install(storeOwner: ViewModelStoreOwner, reachabilityWatcher: ReachabilityWatcher) {
            val provider = ViewModelProvider(storeOwner, object : Factory {
                override fun <T : ViewModel?> create(modelClass: Class<T>): T =
                    ViewModelClearedWatcher(storeOwner, reachabilityWatcher) as T
            })
            provider.get(ViewModelClearedWatcher::class.java)
        }
    }
}
复制代码


  • 4、Service 监控: 由于 Android Framework 未提供设置 Service#onDestroy() 全局监听的方法,所以 LeakCanary 是通过 Hook 的方式实现的。

Service 监控这部分源码比较复杂了,需要通过 2 步 Hook 来实现:

  • 1、Hook 主线程消息循环的 mH.mCallback 回调,监听其中的 STOP_SERVICE 消息,将即将 Destroy 的 Service 对象暂存起来(由于 ActivityThread.H 中没有 DESTROY_SERVICE 消息,所以不能直接监听到 onDestroy() 事件,需要第 2 步);
  • 2、使用动态代理 Hook AMS 与 App 通信的的 IActivityManager Binder 对象,代理其中的 serviceDoneExecuting() 方法,视为 Service#onDestroy() 的执行时机,拿到暂存的 Service 对象交给 ObjectWatcher 监控。


源码摘要如下:


ServiceWatcher.kt


private var uninstallActivityThreadHandlerCallback: (() -> Unit)? = null
// 暂存即将 Destroy 的 Service
private val servicesToBeDestroyed = WeakHashMap<IBinder, WeakReference<Service>>()
override fun install() {
    // 1. Hook mH.mCallback
    swapActivityThreadHandlerCallback { mCallback /*原对象*/ ->
        // uninstallActivityThreadHandlerCallback:用于取消 Hook
        uninstallActivityThreadHandlerCallback = {
            swapActivityThreadHandlerCallback {
                mCallback
            }
        }
        // 新对象(lambda 表达式的末行就是返回值)
        Handler.Callback { msg ->
            // 1.1 Service#onStop() 事件
            if (msg.what == STOP_SERVICE) {
                val key = msg.obj as IBinder
                // 1.2 activityThreadServices:反射获取 ActivityThread mServices 映射表 <IBinder, CreateServiceData>
                activityThreadServices[key]?.let {
                    // 1.3 暂存即将 Destroy 的 Service
                    servicesToBeDestroyed[token] = WeakReference(service)
                }
            }
            // 1.4 继续执行 Framework 原有逻辑
            mCallback?.handleMessage(msg) ?: false
        }
    }
    // 2. Hook AMS IActivityManager
    swapActivityManager { activityManagerInterface, activityManagerInstance /*原对象*/ ->
        // uninstallActivityManager:用于取消 Hook
        uninstallActivityManager = {
            swapActivityManager { _, _ ->
                activityManagerInstance
            }
        }
        // 新对象(lambda 表达式的末行就是返回值)
        Proxy.newProxyInstance(activityManagerInterface.classLoader, arrayOf(activityManagerInterface)) { _, method, args ->
            // 2.1 代理 serviceDoneExecuting() 方法
            if (METHOD_SERVICE_DONE_EXECUTING == method.name) {
                // 2.2 取出暂存的即将 Destroy 的 Service
                val token = args!![0] as IBinder
                if (servicesToBeDestroyed.containsKey(token)) {
                    servicesToBeDestroyed.remove(token)?.also { serviceWeakReference ->
                        // 2.3 交给 ObjectWatcher 监控
                        serviceWeakReference.get()?.let { service ->
                            reachabilityWatcher.expectWeaklyReachable(service /*被监控对象*/, "${service::class.java.name} received Service#onDestroy() callback")
                        }
                    }
                }
            }
            // 2.4 继续执行 Framework 原有逻辑
            method.invoke(activityManagerInstance, *args)
        }
    }
}
override fun uninstall() {
    // 关闭 mH.mCallback 的 Hook
    uninstallActivityManager?.invoke()
    uninstallActivityThreadHandlerCallback?.invoke()
    uninstallActivityManager = null
    uninstallActivityThreadHandlerCallback = null
}
// 使用反射修改 ActivityThread 的主线程消息循环的 mH.mCallback
// swap 是一个 lambda 表达式,参数为原对象,返回值为注入的新对象
private fun swapActivityThreadHandlerCallback(swap: (Handler.Callback?) -> Handler.Callback?) {
    val mHField = activityThreadClass.getDeclaredField("mH").apply { isAccessible = true }
    val mH = mHField[activityThreadInstance] as Handler
    val mCallbackField = Handler::class.java.getDeclaredField("mCallback").apply { isAccessible = true }
    val mCallback = mCallbackField[mH] as Handler.Callback?
    // 将 swap 的返回值作为新对象,实现 Hook
    mCallbackField[mH] = swap(mCallback)
}
// 使用反射修改 AMS 与 App 通信的 IActivityManager Binder 对象
// swap 是一个 lambda 表达式,参数为 IActivityManager 的 Class 对象和接口原实现对象,返回值为注入的新对象
private fun swapActivityManager(swap: (Class<*>, Any) -> Any) {
    val singletonClass = Class.forName("android.util.Singleton")
    val mInstanceField = singletonClass.getDeclaredField("mInstance").apply { isAccessible = true }
    val singletonGetMethod = singletonClass.getDeclaredMethod("get")
    val (className, fieldName) = if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.O) {
        "android.app.ActivityManager" to "IActivityManagerSingleton"
    } else {
        "android.app.ActivityManagerNative" to "gDefault"
    }
    val activityManagerClass = Class.forName(className)
    val activityManagerSingletonField = activityManagerClass.getDeclaredField(fieldName).apply { isAccessible = true }
    val activityManagerSingletonInstance = activityManagerSingletonField[activityManagerClass]
    // Calling get() instead of reading from the field directly to ensure the singleton is
    // created.
    val activityManagerInstance = singletonGetMethod.invoke(activityManagerSingletonInstance)
    val iActivityManagerInterface = Class.forName("android.app.IActivityManager")
    // 将 swap 的返回值作为新对象,实现 Hook
    mInstanceField[activityManagerSingletonInstance] = swap(iActivityManagerInterface, activityManagerInstance!!)
}
复制代码
  • 5、RootView 监控: 由于 Android Framework 未提供设置全局监听 RootView 从 WindowManager 中移除的方法,所以 LeakCanary 是通过 Hook 的方式实现的,这一块是通过 squareup 另一个开源库 curtains 实现的。


RootView 监控这部分源码也比较复杂了,需要通过 2 步 Hook 来实现:


  • 1、Hook WMS 服务内部的 WindowManagerGlobal.mViews RootView 列表,获取 RootView 新增和移除的时机;
  • 2、检查 View 对应的 Window 类型,如果是 Dialog 或 DreamService 等类型,则在注册 View#addOnAttachStateChangeListener() 监听,在其中的 onViewDetachedFromWindow() 回调中将 View 对象交给 ObjectWatcher 监控。


LeakCanary 源码摘要如下:


RootViewWatcher.kt

override fun install() {
    // 1. 注册 RootView 监听
    Curtains.onRootViewsChangedListeners += listener
}
private val listener = OnRootViewAddedListener { rootView ->
    val trackDetached = when(rootView.windowType) {
    PHONE_WINDOW -> {
        when (rootView.phoneWindow?.callback?.wrappedCallback) {
            // Activity 类型已经在 ActivityWatcher 中监控了,不需要重复监控
            is Activity -> false
            is Dialog -> {
                // leak_canary_watcher_watch_dismissed_dialogs:Dialog 监控开关
                val resources = rootView.context.applicationContext.resources
                resources.getBoolean(R.bool.leak_canary_watcher_watch_dismissed_dialogs)
            }
            // DreamService 屏保等
            else -> true
        }
    }
    POPUP_WINDOW -> false
    TOOLTIP, TOAST, UNKNOWN -> true
    }
    if (trackDetached) {
        // 2. 注册 View#addOnAttachStateChangeListener 监听
        rootView.addOnAttachStateChangeListener(object : OnAttachStateChangeListener {
            val watchDetachedView = Runnable {
                // 3. 交给 ObjectWatcher 监控
                reachabilityWatcher.expectWeaklyReachable(rootView /*被监控对象*/ , "${rootView::class.java.name} received View#onDetachedFromWindow() callback")
            }
            override fun onViewAttachedToWindow(v: View) {
                mainHandler.removeCallbacks(watchDetachedView)
            }
            override fun onViewDetachedFromWindow(v: View) {
                mainHandler.post(watchDetachedView)
            }
        })
    }
}
复制代码


curtains 源码摘要如下:

RootViewsSpy.kt


private val delegatingViewList = object : ArrayList<View>() {
    // 重写 ArrayList#add 方法
    override fun add(element: View): Boolean {
        // 回调
        listeners.forEach { it.onRootViewsChanged(element, true) }
        return super.add(element)
    }
    // 重写 ArrayList#removeAt 方法
    override fun removeAt(index: Int): View {
        // 回调
        val removedView = super.removeAt(index)
        listeners.forEach { it.onRootViewsChanged(removedView, false) }
        return removedView
    }
}
companion object {
    fun install(): RootViewsSpy {
        return RootViewsSpy().apply {
            WindowManagerSpy.swapWindowManagerGlobalMViews { mViews /*原对象*/ ->
                // 新对象(lambda 表达式的末行就是返回值)
                delegatingViewList.apply { addAll(mViews) }
            }
        }
    }
}
复制代码


WindowManageSpy.kt


// Hook WMS 服务内部的 WindowManagerGlobal.mViews RootView 列表
// swap 是一个 lambda 表达式,参数为原对象,返回值为注入的新对象
fun swapWindowManagerGlobalMViews(swap: (ArrayList<View>) -> ArrayList<View>) {
    windowManagerInstance?.let { windowManagerInstance ->
        mViewsField?.let { mViewsField ->
            val mViews = mViewsField[windowManagerInstance] as ArrayList<View>
            mViewsField[windowManagerInstance] = swap(mViews)
        }
    }
}
复制代码


至此,LeakCanary 初始化完成,并且成功在 Android Framework 的各个位置安插监控,实现对 Activity 和 Service 等对象进入无用状态的监听。我们可以用一张示意图描述 LeakCanary 的部分结构:


image.png

6.3 LeakCanary 如何判定对象泄漏?


在以上步骤中,当对象的使用生命周期结束后,会交给 ObjectWatcher 监控,现在我们来具体看下它是怎么判断对象发生泄漏的。主要逻辑概括为 3 步:


  • 第 1 步: 为被监控对象 watchedObject 创建一个 KeyedWeakReference 弱引用,并存储到 <UUID, KeyedWeakReference> 的映射表中;
  • 第 2 步: postDelay 五秒后检查引用对象是否出现在引用队列中,出现在队列则说明被监控对象未发生泄漏。随后,移除映射表中未泄露的记录,更新泄漏的引用对象的 retainedUptimeMillis 字段以标记为泄漏;
  • 第 3 步: 通过回调 onObjectRetained 告知 LeakCanary 内部发生新的内存泄漏。


源码摘要如下:

AppWatcher.kt


val objectWatcher = ObjectWatcher(
    // lambda 表达式获取当前系统时间
    clock = { SystemClock.uptimeMillis() },
    // lambda 表达式实现 Executor SAM 接口
    checkRetainedExecutor = {
        mainHandler.postDelayed(it, retainedDelayMillis)
    },
    // lambda 表达式获取监控开关
    isEnabled = { true }
)
复制代码


ObjectWatcher.kt


class ObjectWatcher constructor(
    private val clock: Clock,
    private val checkRetainedExecutor: Executor,
    private val isEnabled: () -> Boolean = { true }
) : ReachabilityWatcher {
    if (!isEnabled()) {
        // 监控开关
        return
    }
    // 被监控的对象映射表 <UUID,KeyedWeakReference>
    private val watchedObjects = mutableMapOf<String, KeyedWeakReference>()
    // KeyedWeakReference 关联的引用队列,用于判断对象是否泄漏
    private val queue = ReferenceQueue<Any>()
    // 1. 为 watchedObject 对象增加监控
    @Synchronized 
    override fun expectWeaklyReachable(
        watchedObject: Any,
        description: String
    ) {
        // 1.1 移除 watchedObjects 中未泄漏的引用对象
        removeWeaklyReachableObjects()
        // 1.2 新建一个 KeyedWeakReference 引用对象
        val key = UUID.randomUUID().toString()
        val watchUptimeMillis = clock.uptimeMillis()
        watchedObjects[key] = KeyedWeakReference(watchedObject, key, description, watchUptimeMillis, queue)
        // 2. 五秒后检查引用对象是否出现在引用队列中,否则判定发生泄漏
        // checkRetainedExecutor 相当于 postDelay 五秒后执行 moveToRetained() 方法
        checkRetainedExecutor.execute {
            moveToRetained(key)
        }
    }
    // 2. 五秒后检查引用对象是否出现在引用队列中,否则说明发生泄漏
    @Synchronized 
    private fun moveToRetained(key: String) {
        // 2.1 移除 watchedObjects 中未泄漏的引用对象
        removeWeaklyReachableObjects()
        // 2.2 依然存在的引用对象被判定发生泄漏
        val retainedRef = watchedObjects[key]
        if (retainedRef != null) {
            retainedRef.retainedUptimeMillis = clock.uptimeMillis()
            // 3. 回调通知 LeakCanary 内部处理
            onObjectRetainedListeners.forEach { it.onObjectRetained() }
        }
    }
    // 移除未泄漏对象对应的 KeyedWeakReference
    private fun removeWeaklyReachableObjects() {
        var ref: KeyedWeakReference?
        do {
            ref = queue.poll() as KeyedWeakReference?
            if (ref != null) {
                // KeyedWeakReference 出现在引用队列中,说明未发生泄漏
                watchedObjects.remove(ref.key)
            }
        } while (ref != null)
    }
    // 4. Heap Dump 后移除所有监控时间早于 heapDumpUptimeMillis 的引用对象
    @Synchronized 
    fun clearObjectsWatchedBefore(heapDumpUptimeMillis: Long) {
        val weakRefsToRemove = watchedObjects.filter { it.value.watchUptimeMillis <= heapDumpUptimeMillis }
        weakRefsToRemove.values.forEach { it.clear() }
        watchedObjects.keys.removeAll(weakRefsToRemove.keys)
    }
    // 获取是否有内存泄漏对象
    val hasRetainedObjects: Boolean
    @Synchronized get() {
        // 移除 watchedObjects 中未泄漏的引用对象
        removeWeaklyReachableObjects()
        return watchedObjects.any { it.value.retainedUptimeMillis != -1L }
    }
    // 获取内存泄漏对象计数
    val retainedObjectCount: Int
    @Synchronized get() {
        // 移除 watchedObjects 中未泄漏的引用对象
        removeWeaklyReachableObjects()
        return watchedObjects.count { it.value.retainedUptimeMillis != -1L }
    }
}
复制代码


被监控对象 watchedObject 关联的弱引用对象:

KeyedWeakReference.kt


class KeyedWeakReference(
    // 被监控对象
    referent: Any,
    // 唯一 Key,根据此字段匹配映射表中的记录
    val key: String,
    // 描述信息
    val description: String,
    // 监控开始时间,即引用对象创建时间
    val watchUptimeMillis: Long,
    // 关联的引用队列
    referenceQueue: ReferenceQueue<Any>
) : WeakReference<Any>(referent, referenceQueue) {
    // 记录实际对象 referent 被判定为泄漏对象的时间
    // -1L 表示非泄漏对象,或者还未判定完成
    @Volatile
    var retainedUptimeMillis = -1L
    override fun clear() {
        super.clear()
        retainedUptimeMillis = -1L
    }
    companion object {
        // 记录最近一次触发 Heap Dump 的时间
        @Volatile
        @JvmStatic var heapDumpUptimeMillis = 0L
    }
}
复制代码

6.4 LeakCanary 发现泄漏对象后就会触发分析吗?


ObjectWatcher 判定被监控对象发生泄漏后,会通过接口方法 OnObjectRetainedListener#onObjectRetained() 回调到 LeakCanary 内部的管理器 InternalLeakCanary 处理(在前文 AppWatcher 初始化中提到过)。LeakCanary 不会每次发现内存泄漏对象都进行分析工作,而会进行两个拦截:


  • 拦截 1:泄漏对象计数未达到阈值,或者进入后台时间未达到阈值;
  • 拦截 2:计算距离上一次 HeapDump 未超过 60s。

源码摘要如下:


InternalLeakCanary.kt


// 从 ObjectWatcher 回调过来
override fun onObjectRetained() = scheduleRetainedObjectCheck()
private lateinit var heapDumpTrigger: HeapDumpTrigger
fun scheduleRetainedObjectCheck() {
    if (this::heapDumpTrigger.isInitialized) {
        heapDumpTrigger.scheduleRetainedObjectCheck()
    }
}
复制代码

HeapDumpTrigger.kt

fun scheduleRetainedObjectCheck(delayMillis: Long = 0L) {
    // 已简化:源码此处使用时间戳拦截,避免重复 postDelayed
    backgroundHandler.postDelayed({
        checkRetainedObjects()
    }, delayMillis)
}
private fun checkRetainedObjects() {
    val config = configProvider()
    // 泄漏对象计数
    var retainedReferenceCount = objectWatcher.retainedObjectCount
    if (retainedReferenceCount > 0) {
        // 主动触发 GC,并等待 100 ms
        gcTrigger.runGc()
        // 重新获取泄漏对象计数
        retainedReferenceCount = objectWatcher.retainedObjectCount
    }
    // 拦截 1:泄漏对象计数未达到阈值,或者进入后台时间未达到阈值
    if (retainedKeysCount < retainedVisibleThreshold) {
        // App 位于前台或者刚刚进入后台
        if (applicationVisible || applicationInvisibleLessThanWatchPeriod) {
            // 发送通知提醒
            showRetainedCountNotification("App visible, waiting until %d retained objects")
            // 延迟 2 秒再检查
            scheduleRetainedObjectCheck(WAIT_FOR_OBJECT_THRESHOLD_MILLIS)
            return;
        }
    }
    // 拦截 2:计算距离上一次 HeapDump 未超过 60s
    val now = SystemClock.uptimeMillis()
    val elapsedSinceLastDumpMillis = now - lastHeapDumpUptimeMillis
    if (elapsedSinceLastDumpMillis < WAIT_BETWEEN_HEAP_DUMPS_MILLIS) {
        // 发送通知提醒
        showRetainedCountNotification("Last heap dump was less than a minute ago")
        // 延迟 (60 - elapsedSinceLastDumpMillis)s 再检查
        scheduleRetainedObjectCheck(WAIT_BETWEEN_HEAP_DUMPS_MILLIS - elapsedSinceLastDumpMillis)
        return
    }
    // 移除通知提醒
    dismissRetainedCountNotification()
    // 触发 HeapDump(此时,应用有可能在后台)
    dumpHeap(...)
}
// 真正开始执行 Heap Dump
private fun dumpHeap(...) {
    // 1. 获取文件存储提供器
    val directoryProvider = InternalLeakCanary.createLeakDirectoryProvider(InternalLeakCanary.application)
    // 2. 创建 .hprof File 文件
    val heapDumpFile = directoryProvider.newHeapDumpFile()
    // 3. 执行 Heap Dump
    // Heap Dump 开始时间戳
    val heapDumpUptimeMillis = SystemClock.uptimeMillis()
    // heapDumper.dumpHeap:最终调用 Debug.dumpHprofData(heapDumpFile.absolutePath) 
    configProvider().heapDumper.dumpHeap(heapDumpFile)
    // 4. 清除 ObjectWatcher 中过期的监控
    objectWatcher.clearObjectsWatchedBefore(heapDumpUptimeMillis)
    // 5. 分析堆快照
    InternalLeakCanary.sendEvent(HeapDump(currentEventUniqueId!!, heapDumpFile, durationMillis, reason))
}
复制代码


请求 GC 的源码可以看一眼:

GcTrigger.kt


fun interface GcTrigger {
    fun runGc()
    object Default : GcTrigger {
        override fun runGc() {
            // Runtime.gc() 相比于 System.gc() 更有可能触发 GC
            Runtime.getRuntime().gc()
            // 暂停等待 GC 
            Thread.sleep(100)
            System.runFinalization()
        }
    }
}
复制代码

6.5 LeakCanary 在哪个线程分析堆快照?


在前面的工作中,LeakCanary 已经成功生成 .hprof 堆快照文件,并且发送了一个 LeakCanary 内部事件 HeapDump。那么这个事件在哪里被消费的呢?


一步步跟踪代码可以看到 LeakCanary 的配置项中设置了多个事件消费者 EventListener,其中与 HeapDump 事件有关的是 when{} 代码块中三个消费者。不过,这三个消费者并不是并存的,而是会根据 App 当前的依赖项而选择最优的执行策略:


  • 策略 1 - WorkerManager 多进程分析
  • 策略 2 - WorkManager 异步分析
  • 策略 3 - 异步线程分析(兜底策略)

LeakCanary 配置项中的事件消费者:


LeakCanary.kt

data class Config(
    val eventListeners: List<EventListener> = listOf(
        LogcatEventListener,
        ToastEventListener,
        LazyForwardingEventListener {
            if (InternalLeakCanary.formFactor == TV) TvEventListener else NotificationEventListener
        },
        when {
            // 策略 1 - WorkerManager 多进程分析
            RemoteWorkManagerHeapAnalyzer.remoteLeakCanaryServiceInClasspath ->RemoteWorkManagerHeapAnalyzer
            // 策略 2 - WorkManager 异步分析
            WorkManagerHeapAnalyzer.validWorkManagerInClasspath -> WorkManagerHeapAnalyzer
            // 策略 3 - 异步线程分析(兜底策略)
            else -> BackgroundThreadHeapAnalyzer
        }
    ),
    ...
)
复制代码
  • 策略 1 - WorkerManager 多进程分析: 判断是否可以类加载 RemoteLeakCanaryWorkerService ,这个类位于前文提到的 com.squareup.leakcanary:leakcanary-android-process:2.9.1 依赖中。如果可以类加载成功则视为有依赖,使用 WorkerManager 多进程分析;


RemoteWorkManagerHeapAnalyzer.kt

object RemoteWorkManagerHeapAnalyzer : EventListener {
    // 通过类加载是否成功,判断是否存在依赖
    internal val remoteLeakCanaryServiceInClasspath by lazy {
        try {
            Class.forName("leakcanary.internal.RemoteLeakCanaryWorkerService")
            true
        } catch (ignored: Throwable) {
            false
        }
    }
    override fun onEvent(event: Event) {
        if (event is HeapDump) {
            // 创建并分发 WorkManager 多进程请求
            val heapAnalysisRequest = OneTimeWorkRequest.Builder(RemoteHeapAnalyzerWorker::class.java).apply {
                val dataBuilder = Data.Builder()
                    .putString(ARGUMENT_PACKAGE_NAME, application.packageName)
                    .putString(ARGUMENT_CLASS_NAME, REMOTE_SERVICE_CLASS_NAME)
                setInputData(event.asWorkerInputData(dataBuilder))
                with(WorkManagerHeapAnalyzer) {
                    addExpeditedFlag()
                }
            }.build()
            WorkManager.getInstance(application).enqueue(heapAnalysisRequest)
        }
    }
}
复制代码

RemoteHeapAnalyzerWorker.kt

internal class RemoteHeapAnalyzerWorker(appContext: Context, workerParams: WorkerParameters) : RemoteListenableWorker(appContext, workerParams) {
    override fun startRemoteWork(): ListenableFuture<Result> {
        val heapDump = inputData.asEvent<HeapDump>()
        val result = SettableFuture.create<Result>()
        heapAnalyzerThreadHandler.post {
            // 1.1 分析堆快照
            val doneEvent = AndroidDebugHeapAnalyzer.runAnalysisBlocking(heapDump, isCanceled = {
                result.isCancelled
            }) { progressEvent ->
                // 1.2 发送分析进度事件
                if (!result.isCancelled) {
                    InternalLeakCanary.sendEvent(progressEvent)
                }
            }
            // 1.3 发送分析完成事件
            InternalLeakCanary.sendEvent(doneEvent)
            result.set(Result.success())
        }
        return result
    }
}
复制代码
  • 策略 2 - WorkManager 异步分析: 判断是否可以类加载 androidx.work.WorkManager ,如果可以,则使用 WorkManager 异步分析;


WorkManagerHeapAnalyzer.kt

internal val validWorkManagerInClasspath by lazy {
    // 判断 WorkManager 依赖,代码略
}
override fun onEvent(event: Event) {
    if (event is HeapDump) {
        // 创建并分发 WorkManager 请求
        val heapAnalysisRequest = OneTimeWorkRequest.Builder(HeapAnalyzerWorker::class.java).apply {
            setInputData(event.asWorkerInputData())
            addExpeditedFlag()
        }.build()
        val application = InternalLeakCanary.application
        WorkManager.getInstance(application).enqueue(heapAnalysisRequest)
    }
}
复制代码

HeapAnalyzerWorker.kt

internal class HeapAnalyzerWorker(appContext: Context, workerParams: WorkerParameters) : Worker(appContext, workerParams) {
    override fun doWork(): Result {
        // 2.1 分析堆快照
        val doneEvent = AndroidDebugHeapAnalyzer.runAnalysisBlocking(inputData.asEvent()) { event ->
            // 2.2 发送分析进度事件
            InternalLeakCanary.sendEvent(event)
        }
        // 2.3 发送分析完成事件
        InternalLeakCanary.sendEvent(doneEvent)
        return Result.success()
    }
}
复制代码
  • 策略 3 - 异步线程分析(兜底策略):  如果以上策略未命中,则直接使用子线程兜底执行。

BackgroundThreadHeapAnalyzer.kt


object BackgroundThreadHeapAnalyzer : EventListener {
    // HandlerThread
    internal val heapAnalyzerThreadHandler by lazy {
        val handlerThread = HandlerThread("HeapAnalyzer")
        handlerThread.start()
        Handler(handlerThread.looper)
    }
    override fun onEvent(event: Event) {
        if (event is HeapDump) {
            // HandlerThread 请求
            heapAnalyzerThreadHandler.post {
                // 3.1 分析堆快照
                val doneEvent = AndroidDebugHeapAnalyzer.runAnalysisBlocking(event) { event ->
                    // 3.2 发送分析进度事件
                    InternalLeakCanary.sendEvent(event)
                }
                // 3.3 发送分析完成事件
                InternalLeakCanary.sendEvent(doneEvent)
            }
        }
    }
}
复制代码


可以看到,不管采用那种执行策略,最终执行的逻辑都是一样的:


  • 1、分析堆快照;
  • 2、发送分析进度事件;
  • 3、发送分析完成事件。


6.5 LeakCanary 如何分析堆快照?


在前面的分析中,我们已经知道 LeakCanary 是通过子线程或者子进程执行 AndroidDebugHeapAnalyzer.runAnalysisBlocking 方法来分析堆快照的,并在分析过程中和分析完成后发送回调事件。现在我们来阅读 LeakCanary 的堆快照分析过程:

AndroidDebugHeapAnalyzer.kt


fun runAnalysisBlocking(
    heapDumped: HeapDump,
    isCanceled: () -> Boolean = { false },
    progressEventListener: (HeapAnalysisProgress) -> Unit
): HeapAnalysisDone<*> {
    ...
    // 1. .hprof 文件
    val heapDumpFile = heapDumped.file
    // 2. 分析堆快照
    val heapAnalysis = analyzeHeap(heapDumpFile, progressListener, isCanceled)
    val analysisDoneEvent = ScopedLeaksDb.writableDatabase(application) { db ->
    // 3. 将分析报告持久化到 DB
    val id = HeapAnalysisTable.insert(db, heapAnalysis)
    // 4. 发送分析完成事件(返回到上一级进行发送:InternalLeakCanary.sendEvent(doneEvent))
    val showIntent = LeakActivity.createSuccessIntent(application, id)
    val leakSignatures = fullHeapAnalysis.allLeaks.map { it.signature }.toSet()
    val leakSignatureStatuses = LeakTable.retrieveLeakReadStatuses(db, leakSignatures)
    val unreadLeakSignatures = leakSignatureStatuses.filter { (_, read) -> !read}.keys.toSet()
        HeapAnalysisSucceeded(heapDumped.uniqueId, fullHeapAnalysis, unreadLeakSignatures ,showIntent)
    }
    return analysisDoneEvent
}
复制代码


核心分析方法是 analyzeHeap(…),继续往下走:

AndroidDebugHeapAnalyzer.kt


private fun analyzeHeap(
    heapDumpFile: File,
    progressListener: OnAnalysisProgressListener,
    isCanceled: () -> Boolean
): HeapAnalysis {
    ...
    // Shark 堆快照分析器
    val heapAnalyzer = HeapAnalyzer(progressListener)
    ...
    // 构建对象图信息
    val sourceProvider = ConstantMemoryMetricsDualSourceProvider(ThrowingCancelableFileSourceProvider(heapDumpFile)
    val graph = sourceProvider.openHeapGraph(proguardMapping = proguardMappingReader?.readProguardMapping())
    ...
    // 开始分析
    heapAnalyzer.analyze(
    heapDumpFile = heapDumpFile,
    graph = graph,
    leakingObjectFinder = config.leakingObjectFinder, // 默认是 KeyedWeakReferenceFinder
    referenceMatchers = config.referenceMatchers, // 默认是 AndroidReferenceMatchers
    computeRetainedHeapSize = config.computeRetainedHeapSize, // 默认是 true
    objectInspectors = config.objectInspectors, // 默认是 AndroidObjectInspectors
    metadataExtractor = config.metadataExtractor // 默认是 AndroidMetadataExtractor
    )
}
复制代码


开始进入 Shark 组件:

shark.HeapAnalyzer.kt


// analyze -> analyze -> FindLeakInput.analyzeGraph
private fun FindLeakInput.analyzeGraph(
    metadataExtractor: MetadataExtractor,
    leakingObjectFinder: LeakingObjectFinder,
    heapDumpFile: File,
    analysisStartNanoTime: Long
): HeapAnalysisSuccess {
    ...
    // 1. 在堆快照中寻找泄漏对象,默认是寻找 KeyedWeakReference 类型对象
    // leakingObjectFinder 默认是 KeyedWeakReferenceFinder
    val leakingObjectIds = leakingObjectFinder.findLeakingObjectIds(graph)
    // 2. 分析泄漏对象的最短引用链,并按照应用链签名分类
    // applicationLeaks: Application Leaks
    // librbuildLeakTracesaryLeaks:Library Leaks
    // unreachableObjects:LeakCanary 无法分析出强引用链,可以提 Stack Overflow
    val (applicationLeaks, libraryLeaks, unreachableObjects) = findLeaks(leakingObjectIds)
    // 3. 返回分析完成事件
    return HeapAnalysisSuccess(...)
}
private fun FindLeakInput.findLeaks(leakingObjectIds: Set<Long>): LeaksAndUnreachableObjects {
    // PathFinder:引用链分析器
    val pathFinder = PathFinder(graph, listener, referenceReader, referenceMatchers)
    // pathFindingResults:完整引用链
    val pathFindingResults = pathFinder.findPathsFromGcRoots(leakingObjectIds, computeRetainedHeapSize)
    // unreachableObjects:LeakCanary 无法分析出强引用链(相当于 LeakCanary 的 Bug)
    val unreachableObjects = findUnreachableObjects(pathFindingResults, leakingObjectIds)
    // shortestPaths:最短引用链
    val shortestPaths = deduplicateShortestPaths(pathFindingResults.pathsToLeakingObjects)
    // inspectedObjectsByPath:标记信息
    val inspectedObjectsByPath = inspectObjects(shortestPaths)
    // retainedSizes:泄漏内存大小
    val retainedSizes = computeRetainedSizes(inspectedObjectsByPath, pathFindingResults.dominatorTree)
    // 生成单个泄漏问题的分析报告,并按照应用链签名分组,按照 Application Leaks 和 Library Leaks 分类,按照 Application Leaks 和 Library Leaks 分类
    // applicationLeaks: Application Leaks
    // librbuildLeakTracesaryLeaks:Library Leaks
    val (applicationLeaks, librbuildLeakTracesaryLeaks) = buildLeakTraces(shortestPaths, inspectedObjectsByPath, retainedSizes)
    return LeaksAndUnreachableObjects(applicationLeaks, libraryLeaks, unreachableObjects)
}
复制代码


可以看到,堆快照分析最终是交给 Shark 中的 HeapAnalizer 完成的,核心流程是:


  • 1、在堆快照中寻找泄漏对象,默认是寻找 KeyedWeakReference 类型对象;
  • 2、分析 KeyedWeakReference 对象的最短引用链,并按照引用链签名分组,按照 Application Leaks 和 Library Leaks 分类;
  • 3、返回分析完成事件。


第 1 步和第 3 步不用说了,继续分析最复杂的第 2 步:

shark.HeapAnalyzer.kt


// 生成单个泄漏问题的分析报告,并按照应用链签名分组,按照 Application Leaks 和 Library Leaks 分类,按照 Application Leaks 和 Library Leaks 分类
private fun FindLeakInput.buildLeakTraces(
    shortestPaths: List<ShortestPath> /*最短引用链*/ ,
    inspectedObjectsByPath: List<List<InspectedObject>> /*标记信息*/ ,
    retainedSizes: Map<Long, Pair<Int, Int>>? /*泄漏内存大小*/
): Pair<List<ApplicationLeak>, List<LibraryLeak>> {
    // Application Leaks
    val applicationLeaksMap = mutableMapOf<String, MutableList<LeakTrace>>()
    // Library Leaks
    val libraryLeaksMap = mutableMapOf<String, Pair<LibraryLeakReferenceMatcher, MutableList<LeakTrace>>>()
    shortestPaths.forEachIndexed { pathIndex, shortestPath ->
        // 标记信息
        val inspectedObjects = inspectedObjectsByPath[pathIndex]
        // 实例化引用链上的每个对象快照(非怀疑对象的 leakingStatus 为 NOT_LEAKING)
        val leakTraceObjects = buildLeakTraceObjects(inspectedObjects, retainedSizes)
        val referencePath = buildReferencePath(shortestPath, leakTraceObjects)
        // 分析报告
        val leakTrace = LeakTrace(
            gcRootType = GcRootType.fromGcRoot(shortestPath.root.gcRoot),
            referencePath = referencePath,
            leakingObject = leakTraceObjects.last()
        )
        val firstLibraryLeakMatcher = shortestPath.firstLibraryLeakMatcher()
        if (firstLibraryLeakMatcher != null) {
            // Library Leaks
            val signature: String = firstLibraryLeakMatcher.pattern.toString().createSHA1Hash()
            libraryLeaksMap.getOrPut(signature) { firstLibraryLeakMatcher to mutableListOf() }.second += leakTrace
        } else {
            // Application Leaks
            applicationLeaksMap.getOrPut(leakTrace.signature) { mutableListOf() } += leakTrace
        }
    }
    val applicationLeaks = applicationLeaksMap.map { (_, leakTraces) ->
        // 实例化为 ApplicationLeak 类型
        ApplicationLeak(leakTraces)
    }
    val libraryLeaks = libraryLeaksMap.map { (_, pair) ->
        // 实例化为 LibraryLeak 类型
        val (matcher, leakTraces) = pair
        LibraryLeak(leakTraces, matcher.pattern, matcher.description)
    }
    return applicationLeaks to libraryLeaks
}
复制代码


6.6 LeakCanary 如何筛选 ~~~ 怀疑对象?


LeakCanary 会使用 ObjectInspector 对象检索器在引用链上的节点中标记必要的信息和状态,标记信息会显示在分析报告中,并且会影响报告中的提示。而引用链 LEAKING 节点以后到第一个 NOT_LEAKING 节点中间的节点,才会用 ~~~ 下划线标记为怀疑对象。


在第 6.5 节中,LeakCanary 通过 leakingObjectFinder 标记引用信息,leakingObjectFinder 默认是 AndroidObjectInspectors.appDefaults ,也可以在配置项中自定义。


// inspectedObjectsByPath:筛选出非怀疑对象(分析报告中 ~~~ 标记的是怀疑对象)
val inspectedObjectsByPath = inspectObjects(shortestPaths)
复制代码


看一下可视化报告中相关源码:

DisplayLeakAdapter.kt

...
val reachabilityString = when (leakingStatus) {
    UNKNOWN -> extra("UNKNOWN")
    NOT_LEAKING -> "NO" + extra(" (${leakingStatusReason})")
    LEAKING -> "YES" + extra(" (${leakingStatusReason})")
}
...
复制代码


LeakTrace.kt

// 是否为怀疑对象
fun referencePathElementIsSuspect(index: Int): Boolean {
    return  when (referencePath[index].originObject.leakingStatus) {
        UNKNOWN -> true
        NOT_LEAKING -> index == referencePath.lastIndex || referencePath[index + 1].originObject.leakingStatus != NOT_LEAKING
        else -> false
    }
}
复制代码


6.7 LeakCanary 分析完成后的处理


有两个位置处理了 HeapAnalysisSucceeded 事件:


  • Logcat:打印分析报告日志;
  • Notification: 发送分析成功系统通知消息。

LogcatEventListener.kt

object LogcatEventListener : EventListener {
    ...
    SharkLog.d { "\u200B\n${LeakTraceWrapper.wrap(event.heapAnalysis.toString(), 120)}" }
    ...
}
复制代码


NotificationEventListener.kt


object NotificationEventListener : EventListener {
    ...
    val flags = if (Build.VERSION.SDK_INT >= 23) {
        PendingIntent.FLAG_UPDATE_CURRENT or PendingIntent.FLAG_IMMUTABLE
    } else {
        PendingIntent.FLAG_UPDATE_CURRENT
    }
    // 点击通知消息打开可视化分析报告
    val pendingIntent = PendingIntent.getActivity(appContext, 1,  event.showIntent, flags)
    showHeapAnalysisResultNotification(contentTitle,pendingIntent)
    ...
}
复制代码


至此,LeakCanary 原理分析完毕。


7. 总结


到这里,LeakCanary 的使用和原理分析就讲完了。不过,LeakCanary 毕竟是实验室使用的工具,如果要实现线上内存泄漏监控,你知道怎么做吗?要实现 Native 内存泄漏监控又要怎么做?关注我,带你了解更多。

目录
相关文章
|
1月前
|
Web App开发 缓存 监控
如何解决Node框架中内存管理的挑战?
解决 Node 框架中内存管理的挑战需要综合运用多种方法,并且需要在开发过程中保持谨慎和细心,不断优化和改进代码。同时,定期进行内存管理的检查和维护也是非常重要的。
113 63
|
1月前
|
监控 JavaScript Java
Node.js中内存泄漏的检测方法
检测内存泄漏需要综合运用多种方法,并结合实际的应用场景和代码特点进行分析。及时发现和解决内存泄漏问题,可以提高应用的稳定性和性能,避免潜在的风险和故障。同时,不断学习和掌握内存管理的知识,也是有效预防内存泄漏的重要途径。
134 52
|
24天前
|
存储 分布式计算 安全
阿里云服务器经济型e、通用算力型u1、计算型c8i、通用型g8i、内存型r8i实例介绍与选择参考
在阿里云现在的活动中,可选的云服务器实例规格主要有经济型e、通用算力型u1、计算型c8i、通用型g8i、内存型r8i实例,虽然阿里云在活动中提供了多种不同规格的云服务器实例,以满足不同用户和应用场景的需求。但是有的用户并不清楚他们的性能如何,应该如何选择。本文将详细介绍阿里云服务器中的经济型e、通用算力型u1、计算型c8i、通用型g8i、内存型r8i实例的性能、适用场景及选择参考,帮助用户根据自身需求做出合适的选择。
|
1月前
|
缓存 算法 Java
本文聚焦于Java内存管理与调优,介绍Java内存模型、内存泄漏检测与预防、高效字符串拼接、数据结构优化及垃圾回收机制
在现代软件开发中,性能优化至关重要。本文聚焦于Java内存管理与调优,介绍Java内存模型、内存泄漏检测与预防、高效字符串拼接、数据结构优化及垃圾回收机制。通过调整垃圾回收器参数、优化堆大小与布局、使用对象池和缓存技术,开发者可显著提升应用性能和稳定性。
52 6
|
1月前
|
存储 缓存 安全
阿里云服务器内存型r7、r8a、r8y、r8i实例区别及选择参考
随着阿里云2024年金秋云创季的开始,目前在阿里云的活动中,属于内存型实例规格的云服务器有内存型r7、内存型r8a、内存型r8y和内存型r8i这几个实例规格,相比于活动内的经济型e和通用算力型u1等实例规格来说,这些实例规格等性能更强,虽然这几个实例规格的云服务器通常处理器与内存的配比为都是1:8,但是他们在处理器、存储、网络、安全等方面等性能并不是一样的,所以他们的适用场景也有着不同。本文为大家介绍内存型r7、r8a、r8y、r8i实例的性能、适用场景的区别以及选择参考。
|
1月前
|
Web App开发 JavaScript 前端开发
使用 Chrome 浏览器的内存分析工具来检测 JavaScript 中的内存泄漏
【10月更文挑战第25天】利用 Chrome 浏览器的内存分析工具,可以较为准确地检测 JavaScript 中的内存泄漏问题,并帮助我们找出潜在的泄漏点,以便采取相应的解决措施。
306 9
|
1月前
|
监控 JavaScript 前端开发
如何检测和解决 JavaScript 中内存泄漏问题
【10月更文挑战第25天】解决内存泄漏问题需要对代码有深入的理解和细致的排查。同时,不断优化和改进代码的结构和逻辑也是预防内存泄漏的重要措施。
60 6
|
1月前
|
Web App开发 缓存 JavaScript
如何检测和解决闭包引起的内存泄露
闭包引起的内存泄露是JavaScript开发中常见的问题。本文介绍了闭包导致内存泄露的原因,以及如何通过工具检测和代码优化来解决这些问题。
|
2月前
|
存储 分布式计算 安全
阿里云服务器内存型r7、内存型r8y、内存型r8i实例规格性能对比与选择参考
在选择阿里云服务器实例规格时,针对内存密集型应用和数据库应用,内存型r7、内存型r8y和内存型r8i实例是这部分应用场景选择最多的热门实例规格。为了帮助大家更好地了解这三款实例的区别,并为选择提供参考,本文将详细对比它们的实例规格、CPU、内存、计算、存储、网络等方面的性能,并附上活动价格对比。让大家了解一下他们之间的不同,以供参考选择。
|
2月前
|
缓存 监控 Java
内存泄漏:深入理解、检测与解决
【10月更文挑战第19天】内存泄漏:深入理解、检测与解决
105 0

热门文章

最新文章