InnoDB索引允许NULL对性能有影响吗(3)

简介: InnoDB索引允许NULL对性能有影响吗

2. 问题2:辅助索引需要MVCC多版本读的时候,为什么需要依赖聚集索引

InnoDB的MVCC是通过在聚集索引页中同时存储了DB_TRX_ID和DB_ROLL_PTR来实现的。

但是我们从上面page dump出来的结果也很明显能看到,附注索引页是不存储DB_TRX_ID信息的。

所以说,辅助索引上如果想要实现MVCC,需要通过回表读聚集索引来实现。


结论2,辅助索引中不存储DB_TRX_ID,需要依托聚集索引实现MVCC


3. 问题3:为什么查找数据时,一定要读取叶子节点,只读非叶子节点不行吗

在辅助索引的根节点这个页面中(pageno=4),我们注意到它记录的最小记录(min_rec)对应的是(c1=NULL, id=9)这条记录。

在它指向的叶子节点页面中(pageno=18)也确认了这个情况。

现在把id=9的记录删掉,看看辅助索引数据页会发生什么变化。

[root@yejr.run]> delete from t_sk where id = 9 and c1 is null;
Query OK, 1 row affected (0.01 sec)



先检查第4号数据页。

[root@yejr.run]# innodb_space -s ibdata1 -T test/t_sk -p 4 page-dump

...
records:
{:format=>:compact,
:offset=>126,
:header=>
{:next=>428,
:type=>:node_pointer,
:heap_number=>2,
:n_owned=>0,
:min_rec=>true,
:deleted=>false,
:nulls=>["c1"],
:lengths=>{},
:externs=>[],
:length=>6},
:next=>428,
:type=>:secondary,
:key=>[{:name=>"c1", :type=>"INT UNSIGNED", :value=>:NULL}],
:row=>[{:name=>"id", :type=>"INT UNSIGNED", :value=>9}],
:sys=>[],
:child_page_number=>18,
:length=>8}
...



看到第四号数据页中,最小记录还是 id=9,没有更新。

再查看第18号数据页。

[root@yejr.run]# innodb_space -s ibdata1 -T test/t_sk -p 18 page-dump
...
records:
{:format=>:compact,
:offset=>136,
:header=>
{:next=>146,
:type=>:conventional,
:heap_number=>3,
:n_owned=>0,
:min_rec=>false,
:deleted=>false,
:nulls=>["c1"],
:lengths=>{},
:externs=>[],
:length=>6},
:next=>146,
:type=>:secondary,
:key=>[{:name=>"c1", :type=>"INT UNSIGNED", :value=>:NULL}],
:row=>[{:name=>"id", :type=>"INT UNSIGNED", :value=>30}],
:sys=>[],
:length=>4}
...

在这个数据页(叶子节点)中,最小记录已经被更新成 id=30 这条数据了。

可见,索引树中的非叶子节点数据不是实时更新的,只有叶子节点的数据才是最准确的。

结论3,在索引树中查找数据时,最终一定是要读取叶子节点才行


4. 问题4:索引列允许为NULL,会额外存储更多字节吗

之前流传有一种说法,不允许设置列值允许NULL,是因为会额外多存储一个字节,事实是这样吗?

我们先把c1列改成NOT NULL DEFAULT 0,当然了,改之前要先把所有NULL值更新成0。

[root@yejr.run]> update t_sk set c1=0 where c1 is null;
[root@yejr.run]> alter table t_sk modify c1 int unsigned not null default 0;



在修改之前,每条索引记录长度都是10字节,更新之后却变成了13个字节。

直接对比索引页中的数据,发现不同之处

#允许为NULL,且默认值为NULL时
{:format=>:compact,
:offset=>136,
:header=>
{:next=>146,
:type=>:conventional,
:heap_number=>3,
:n_owned=>0,
:min_rec=>false,
:deleted=>false,
:nulls=>["c1"],
:lengths=>{},
:externs=>[],
:length=>6},
:next=>146,
:type=>:secondary,
:key=>[{:name=>"c1", :type=>"INT UNSIGNED", :value=>:NULL}],
:row=>[{:name=>"id", :type=>"INT UNSIGNED", :value=>48}],
:sys=>[],
:length=>4}


#不允许为NULL,默认值为0时
{:format=>:compact,
:offset=>138,
:header=>
{:next=>151,
:type=>:conventional,
:heap_number=>3,
:n_owned=>0,
:min_rec=>false,
:deleted=>false,
:nulls=>[],
:lengths=>{},
:externs=>[],
:length=>5},
:next=>151,
:type=>:secondary,
:key=>[{:name=>"c1", :type=>"INT UNSIGNED", :value=>0}],
:row=>[{:name=>"id", :type=>"INT UNSIGNED", :value=>48}],
:sys=>[],
:length=>8}

可以看到,原先允许为NULL时,record header需要多一个字节(共6字节),但实际物理存储中无需存储NULL值。

而当设置为NOT NULL DEFAULT 0时,record header只需要5字节,但实际物理存储却多了4字节,总共多了3字节,所以索引记录以前是10字节,更新后变成了13字节,实际上代价反倒变大了。

列值允许为NULL更多的是计算代价变大了,以及索引对索引效率的影响,反倒可以说是节省了物理存储开销。

结论4,定义列值允许为NULL并不会增加物理存储代价,但对索引效率的影响要另外考虑

最后,本文使用的MySQL版本Percona-Server-5.7.22,下载源码后自编译的。

Server version:        5.7.22-22-log Source distribution



5. 几点总结

最后针对InnoDB辅助索引,总结几条建议吧。

a) 索引列最好不要设置允许NULL。

b) 如果是非索引列,设置允许为NULL基本上无所谓。

c) 辅助索引需要依托聚集索引实现MVCC。

d) 叶子节点总是存储最新数据,而非叶子节点则不一定。

e) 尽可能不SELECT *,尽量利用覆盖索引完成查询,能不回表就不回表。

6. 延伸阅读


Enjoy MySQL :)


全文完。

            </div>
相关文章
|
8月前
|
存储 算法 关系型数据库
深入理解InnoDB索引数据结构和算法
1. **索引定义**:索引是提升查询速度的有序数据结构,帮助数据库系统快速找到数据。 2. **索引类型**:包括普通索引、唯一索引、主键索引、空间索引和全文索引,每种有特定应用场景。 3. **数据结构**:InnoDB使用B+树作为索引结构,确保所有节点按顺序排列,降低查询时的磁盘I/O。 4. **B+树特性**:所有数据都在叶子节点,非叶子节点仅存储索引,提供高效范围查询。 5. **索引优势**:通过减少查找数据所需的磁盘I/O次数,显著提高查询性能。 **总结:**InnoDB索引通过B+树结构,优化了数据访问,使得查询速度快,尤其适合大数据量的场景。
442 0
深入理解InnoDB索引数据结构和算法
|
8月前
|
存储 关系型数据库 MySQL
索引大战:探秘InnoDB数据库中B树和Hash索引的优劣
索引大战:探秘InnoDB数据库中B树和Hash索引的优劣
73 0
|
8月前
|
存储 SQL 关系型数据库
系统设计场景题—MySQL使用InnoDB,通过二级索引查第K大的数,时间复杂度是多少?
系统设计场景题—MySQL使用InnoDB,通过二级索引查第K大的数,时间复杂度是多少?
92 1
系统设计场景题—MySQL使用InnoDB,通过二级索引查第K大的数,时间复杂度是多少?
|
8月前
|
存储 算法 关系型数据库
InnoDb行格式、数据页结构、索引底层原理和如何建立索引
InnoDb行格式、数据页结构、索引底层原理和如何建立索引
127 0
|
存储 关系型数据库 MySQL
6.2.2 【MySQL】InnoDB中的索引方案
6.2.2 【MySQL】InnoDB中的索引方案
89 0
|
存储 关系型数据库 MySQL
6.2.3 【MySQL】InnoDB的B+树索引的注意事项
6.2.3 【MySQL】InnoDB的B+树索引的注意事项
88 0
|
23天前
|
存储 关系型数据库 MySQL
Mysql索引:深入理解InnoDb聚集索引与MyisAm非聚集索引
通过本文的介绍,希望您能深入理解InnoDB聚集索引与MyISAM非聚集索引的概念、结构和应用场景,从而在实际工作中灵活运用这些知识,优化数据库性能。
100 7
|
2月前
|
存储 算法 关系型数据库
InnoDB与MyISAM实现索引方式的区别
InnoDB和MyISAM均采用B+树索引,但在实现上有所不同。InnoDB的主键索引在叶子节点存储完整数据记录,辅助索引则存储主键值;而MyISAM的主键索引与数据文件分离,仅存数据地址,且主辅索引无区别,支持非唯一主索引。
45 1
|
5月前
|
SQL 存储 关系型数据库
"MySQL增列必锁表?揭秘InnoDB在线DDL,让你的数据库操作飞一般,性能无忧!"
【8月更文挑战第11天】在数据库领域,MySQL凭借其稳定高效的表现深受开发者喜爱。对于是否会在给数据表添加列时锁表的问题,MySQL的行为受版本、存储引擎等因素影响。从5.6版起,InnoDB支持在线DDL,可在改动表结构时保持表的可访问性,避免长时间锁表。而MyISAM等则需锁表完成操作。例如,在使用InnoDB的表上运行`ALTER TABLE users ADD COLUMN email VARCHAR(255);`时,通常不会完全锁表。虽然在线DDL提高了灵活性,但复杂操作或大表变更仍可能暂时影响性能。因此,进行结构变更前应评估其影响并择机执行。
85 6
|
8月前
|
存储 监控 关系型数据库
如何优化InnoDB的整体性能?
【5月更文挑战第14天】如何优化InnoDB的整体性能?
165 2

相关实验场景

更多