Python 迭代器介绍及其作用(下)

简介: Python 学习的人都知道,Python 中存在两种循环语句:while 和 for。for 循环可以用于 Python 中的任何序列,包括列表、元组、字符串。

构建自定义迭代器

在 Python 中从头开始构建迭代器很容易。我们只需要实现 __iter__() __next__() 方法。

__iter__() 方法返回迭代器对象本身。如果需要,可以执行一些初始化。

__next__() 方法必须返回序列中的下一项。在到达终点时以及在随后的调用中,它必须引发 StopIteration

class PowTwo:
    """Class to implement an iterator
    of powers of two"""
    def __init__(self, max=0):
        self.max = max
    def __iter__(self):
        self.n = 0
        return self
    def __next__(self):
        if self.n <= self.max:
            result = 2 ** self.n
            self.n += 1
            return result
        else:
            raise StopIteration
# create an object
numbers = PowTwo(3)
# create an iterable from the object
i = iter(numbers)
# Using next to get to the next iterator element
print(next(i))
print(next(i))
print(next(i))
print(next(i))
print(next(i))

输出结果:

1
2
4
8
Traceback (most recent call last):
  File "/Users/yuzhou_1su/go/src/iterdemo.py", line 32, in <module>
    print(next(i))
StopIteration

我们还可以使用 for 循环来迭代我们的迭代器类。

>>> for i in PowTwo(5):
...     print(i)
...     
1
2
4
8
16
32

Python 无限迭代器

迭代器对象中的项目不必耗尽。可以有无限的迭代器(永远不会结束)。在处理此类迭代器时,我们必须小心。

这是一个演示无限迭代器的简单示例。

内置函数 iter() 可以使用两个参数调用,其中第一个参数必须是可调用对象(函数),第二个参数是哨兵。迭代器调用这个函数,直到返回的值等于哨兵。

>>> int()
0
>>> inf = iter(int,1)
>>> next(inf)
0
>>> next(inf)
0

我们可以看到 int() 函数总是返回 0。因此将它作为 iter(int,1) 传递将返回一个迭代器,该迭代器调用 int() 直到返回值等于 1。这永远不会发生,我们得到一个无限迭代器。

我们还可以构建自己的无限迭代器。理论上,以下迭代器将返回所有奇数:

class InfIter:
    """Infinite iterator to return all
        odd numbers"""
    def __iter__(self):
        self.num = 1
        return self
    def __next__(self):
        num = self.num
        self.num += 2
        return num
>>> a = iter(InfIter())
>>> next(a)
1
>>> next(a)
3
>>> next(a)
5
>>> next(a)
7

在对这些类型的无限迭代器进行迭代时,请小心包含终止条件。如上所示,我们可以得到所有奇数,而无需将整个数字系统存储在内存中。理论上,我们可以在有限的内存中拥有无限的项目。

Python 迭代器的好处

使用迭代器的好处是可以节省资源。

  • 代码减少。
  • 代码冗余得到极大解决。
  • 降低代码复杂度。
  • 它为编码带来了更多的稳定性。

总结

Python 的迭代器提供稳定和灵活的代码。迭代器和可迭代对象的区别:

  • Iterable 是一个可以迭代的对象。它在传递给 iter() 方法时生成一个迭代器。
  • Iterator 是一个对象,用于使用 __next__() 方法对可迭代对象进行迭代。迭代器有 __next__() 方法,它返回对象的下一项。

请注意,每个迭代器也是一个可迭代的,但不是每个可迭代的都是一个迭代器。

例如,列表是可迭代的,但列表不是迭代器。可以使用函数 iter() 从可迭代对象创建迭代器。

为了实现这一点,对象的类需要一个方法 __iter__,它返回一个迭代器,或者一个具有从 0 开始的顺序索引的 __getitem__ 方法。但其本质也是实现了 __iter__ 方法。

相关文章
|
3天前
|
存储 程序员 数据处理
深入理解Python中的生成器与迭代器###
本文将探讨Python中生成器与迭代器的核心概念,通过对比分析二者的异同,结合具体代码示例,揭示它们在提高程序效率、优化内存使用方面的独特优势。生成器作为迭代器的一种特殊形式,其惰性求值的特性使其在处理大数据流时表现尤为出色。掌握生成器与迭代器的灵活运用,对于提升Python编程技能及解决复杂问题具有重要意义。 ###
|
1月前
|
存储 索引 Python
Python 迭代器是怎么实现的?
Python 迭代器是怎么实现的?
24 6
|
2月前
|
索引 Python
解密 Python 迭代器的实现原理
解密 Python 迭代器的实现原理
46 13
|
2月前
|
机器学习/深度学习 设计模式 大数据
30天拿下Python之迭代器和生成器
30天拿下Python之迭代器和生成器
19 3
|
1月前
|
存储 大数据 Python
Python 中迭代器与生成器:深度解析与实用指南
Python 中迭代器与生成器:深度解析与实用指南
17 0
|
3月前
|
数据采集 存储 大数据
Python关于迭代器的使用
在Python编程中,数据的处理和操作是核心任务之一。 想象一下,你有一个装满各种颜色球的箱子,你想逐个查看并使用这些球,但又不想一次性将它们全部取出。 这就引出了我们今天要讨论的主题——迭代。
|
3月前
|
存储 安全 数据库
Python中的可迭代性与迭代器
在Python中,可迭代性和迭代器是非常重要的概念,它们为我们提供了一种优雅且高效的方式来处理序列和集合数据。本文将深入探讨这些概念,包括可迭代协议以及与异步编程相关的可迭代性和迭代器。
|
3月前
|
存储 安全 数据库
Python中的可迭代性与迭代器
在Python中,可迭代性和迭代器是非常重要的概念,它们为我们提供了一种优雅且高效的方式来处理序列和集合数据。本文将深入探讨这些概念,包括可迭代协议以及与异步编程相关的可迭代性和迭代器。
|
4月前
|
数据采集 存储 大数据
Python中关于迭代器的使用
总之,迭代器是Python编程的基石,它们在处理数据、优化性能和构建复杂系统方面都有着不可替代的地位。随着技术的不断进步,迭代器将继续在各种编程场景中发挥重要作用。
|
4月前
|
缓存 测试技术 Python
python的装饰器是什么?有什么作用?迭代器和生成器的区别?
python的装饰器是什么?有什么作用?迭代器和生成器的区别?