构建自定义迭代器
在 Python 中从头开始构建迭代器很容易。我们只需要实现 __iter__()
和 __next__()
方法。
__iter__()
方法返回迭代器对象本身。如果需要,可以执行一些初始化。
__next__()
方法必须返回序列中的下一项。在到达终点时以及在随后的调用中,它必须引发 StopIteration
。
class PowTwo: """Class to implement an iterator of powers of two""" def __init__(self, max=0): self.max = max def __iter__(self): self.n = 0 return self def __next__(self): if self.n <= self.max: result = 2 ** self.n self.n += 1 return result else: raise StopIteration # create an object numbers = PowTwo(3) # create an iterable from the object i = iter(numbers) # Using next to get to the next iterator element print(next(i)) print(next(i)) print(next(i)) print(next(i)) print(next(i))
输出结果:
1 2 4 8 Traceback (most recent call last): File "/Users/yuzhou_1su/go/src/iterdemo.py", line 32, in <module> print(next(i)) StopIteration
我们还可以使用 for 循环来迭代我们的迭代器类。
>>> for i in PowTwo(5): ... print(i) ... 1 2 4 8 16 32
Python 无限迭代器
迭代器对象中的项目不必耗尽。可以有无限的迭代器(永远不会结束)。在处理此类迭代器时,我们必须小心。
这是一个演示无限迭代器的简单示例。
内置函数 iter()
可以使用两个参数调用,其中第一个参数必须是可调用对象(函数),第二个参数是哨兵。迭代器调用这个函数,直到返回的值等于哨兵。
>>> int() 0 >>> inf = iter(int,1) >>> next(inf) 0 >>> next(inf) 0
我们可以看到 int()
函数总是返回 0。因此将它作为 iter(int,1)
传递将返回一个迭代器,该迭代器调用 int()
直到返回值等于 1。这永远不会发生,我们得到一个无限迭代器。
我们还可以构建自己的无限迭代器。理论上,以下迭代器将返回所有奇数:
class InfIter: """Infinite iterator to return all odd numbers""" def __iter__(self): self.num = 1 return self def __next__(self): num = self.num self.num += 2 return num
>>> a = iter(InfIter()) >>> next(a) 1 >>> next(a) 3 >>> next(a) 5 >>> next(a) 7
在对这些类型的无限迭代器进行迭代时,请小心包含终止条件。如上所示,我们可以得到所有奇数,而无需将整个数字系统存储在内存中。理论上,我们可以在有限的内存中拥有无限的项目。
Python 迭代器的好处
使用迭代器的好处是可以节省资源。
- 代码减少。
- 代码冗余得到极大解决。
- 降低代码复杂度。
- 它为编码带来了更多的稳定性。
总结
Python 的迭代器提供稳定和灵活的代码。迭代器和可迭代对象的区别:
- Iterable 是一个可以迭代的对象。它在传递给
iter()
方法时生成一个迭代器。 - Iterator 是一个对象,用于使用
__next__()
方法对可迭代对象进行迭代。迭代器有__next__()
方法,它返回对象的下一项。
请注意,每个迭代器也是一个可迭代的,但不是每个可迭代的都是一个迭代器。
例如,列表是可迭代的,但列表不是迭代器。可以使用函数 iter()
从可迭代对象创建迭代器。
为了实现这一点,对象的类需要一个方法 __iter__
,它返回一个迭代器,或者一个具有从 0 开始的顺序索引的 __getitem__
方法。但其本质也是实现了 __iter__
方法。