秩和比综合评价法(RSR)详解及Python实现和应用

简介: 秩和比综合评价法(RSR)详解及Python实现和应用

一、RSR秩和比综合评价法概述


秩和比(Rank-sum ratio,RSR)法,它是一组全新的统计信息分析方法,是数量方法中一种广谱的方法,针对性强,操作简便,使用效果明显。非常适合于医学背景的广大用户。本法从理论上讲,融古典的参数统计与近代的非参数统计于一体,兼及描述性与推断性。该法经过二十余年的发展,在广大学者的共同支持和努力下,此法已日渐完善,广泛地应用于医疗卫生领域的多指标综合评价、统计预测预报、统计质量控制等方面。


一般过程是将效益型指标从小到大排序进行排名、成本型指标从大到小排序进行排名,再计算秩和比,最后统计回归、分档排序。通过秩转换,获得无量纲统计量RSR;在此基础上,运用参数统计分析的概念与方法,研究RSR的分布;以RSR值对评价对象的优劣直接排序或分档排序,从而对评价对象做出综合评价。


二、设计思想


设计思想:算得的RSR越大越好,为此,指标编秩时要严格区分高优与低优。


一般说来,编秩是不难的。例如治疗有效率、诊断符合率等可视为高优指标;发病率、住院病死率、平均住院日等可视为低优指标。编秩时,还可参照指标间相关分析和参照指定的“标准”。例如基于某省10个地区的产前检查率 ,孕妇死亡率,围产儿死亡率进行综合评价在综合评价中,秩和比的值能够包含所有评价指标的信息,显示出这些评价指标的综合水平,RSR值越大表明综合评价越优。


但有时还需实事求是地加以限定.例如病床利用率、平均病床周转次数一般可作高优指标理解,但过高也不见得是好事。


除区分高优指标与低优指标外,有时还要运用不分高优与低优及其种种组合形式,例如在疗效评价中,微效率可视为偏高优(高优与不分的均数),不变率可视为稍低优(偏低优与“不分”的均数)。总之,编秩的技巧问题要从业务出发来合理地解决。综合评价的方法一般是主客观结合的,方法的选择需基于实际指标数据情况选定,最为关键的是指标的选取,以及指标权重的设置,这些需要基于广泛的调研和扎实的业务知识,不能说单纯的从数学上解决的。


三、RSR的特点以及应用范围


1.优点


因为 RSR 只使用了数据的相对大小关系,而不真正运用数值本身,所以此方法综合性强,可以显示微小变动,对离群值不敏感;

能够对各个评价对象进行排序分档,找出优劣,是做比较,找关系的有效手段;

能够找出评价指标是否有独立性。

以非参数法为基础,对指标的选择无特殊要求,适用于各种评价对象,由于计算时使用的数值是秩次,可以消除异常值的干扰。


2.缺点


  1. 通过秩替代原始指标值,会损失部分信息,如原始数据的大小差别等。
  2. 不容易对各个指标进行恰当的编秩。
  3. 当 RSR 值实际上不满足正态分布时,分档归类的结果与实际情况会有偏差,且只能回答分级程度是否有差别,不能进一步回答具体的差别情况。


3.应用范围


综合评价的应用领域和范围非常广泛。


从学科领域上看,在自然科学中广泛应用于各种事物的特征和性质的评价。比如,环境监测综合评价、药物临床试验综合评价、地质灾害综合评价、气候特征综合评价、产品质量综合评价等等;

在社会科学中广泛应用于总体特征和个体特征的综合评价。比如,社会治安综合评价,生活质量综合评价、社会发展综合评价、教学水平综合评价、人居环境综合评价等等。

在经济学学科领域更为普遍。如,综合经济效益评价、小康建设进程评价、经济预警评价分析、生产方式综合评价、房地产市场景气程度综合评价等等。


四、实现步骤


1.指标权重计算


进行结果评定时我们知道影响因素的权重大小都是不一致的,我们需要先计算出各个指标的权重再进行加权秩和比,不然各个指标之间的信息差就没有意义。


计算指标权重的方法有AHP、熵权法或是自定义权重,笔者均写过AHP和熵权法、若不清楚可以阅览:层次分析法(AHP)原理以及应用


一文速学-熵权法实战确定评价指标权重


这里采用熵权法演示,且文可接熵权法演示实验,实验数据均相同,这里熵权法原理不作解释,想要了解可以看我之前的博客。


数据为港口数据开发能力系统指标:


49ac1f72c9704b329e73124fac4677a6.png

import numpy as np
import pandas as pd
df1=pd.read_excel(r'D:\拟定指标test1.xlsx')
data1=df1.iloc[:,1:7]
#min-max标准化
data1_std=(data1-data1.min())/(data1.max()-data1.min())
m,n=data1_std.shape
data1_value=data1_std.values
k=1/np.log(m)
yij=data1_value.sum(axis=0)
#计算第j项指标下第i个样本值占比重:
pij=data1_value/yij
#计算各指标的信息熵:
test=pij*np.log(pij)
test=np.nan_to_num(test)
ej=-k*(test.sum(axis=0))
#计算每种指标的权重
wi=(1-ej)/np.sum(1-ej)

得到各个指标的权重:

7e4bb1620cdc4c25a26ac57766d81601.png

2.编秩


根据每一个具体的评价指标按其指标值的大小进行排序,得到秩次R,用秩次R来代替原来的评价指标值。

编秩方法总共有两种:


1.整秩法


将 n 个评价对象的 m 个评价指标排列成 n 行 m 列的原始数据表。编出每个指标各评价对象的秩,其中效益型指标(可以理解为正向指标)从小到大编秩,成本型指标(可理解为负向指标)从大到小编秩,同一指标数据相同者编平均秩。得到秩矩阵R;


2.非整秩法


此方法用类似于线性插值的方式对指标值进行编秩,以改进 RSR 法编秩方法的不足,所编秩次与原指标值之间存在定量的线性对应关系,从而克服了 RSR 法秩次化时易损失原指标值定量信息的缺点。


对于效益型指标:

8e12f8f15aee4bbbb328696945efa2a8.png


对于成本型指标:


12dc653801af4cdb8e6ac71e870e4424.png

这里采用整秩法:

R_result=pd.DataFrame()
for i, X in enumerate(data1_std.columns):
            R_result[f'X{str(i + 1)}:{X}'] = data1_std.iloc[:, i]
            R_result[f'R{str(i + 1)}:{X}'] = R_result.iloc[:, i].rank(method="dense")


a31eca7035c5442dbf583b8122f60d79.png


3.计算秩和比RSR值

一个gif.gifgif.gif列的矩阵中,其对应的RSR计算公式为:

gif.gif

其中i=1,2,...,n;j=1,2...,m,R_{ij}表示为第i行第j列元素的秩。

当个评价指标的权重不同时,计算加权秩和比为


gif.gif

W_{j}表示第第j个指标的权重。RSR值无量纲,最小值为gif.gif,最大值为1.

# 计算秩和比
R_result['RSR'] = (R_result.iloc[:, 1::2] * wi).sum(axis=1) / n
R_result['RSR_Rank'] = R_result['RSR'].rank(ascending=False)


4.绘制秩和比RSR分布表


其方法为:

● 将RSR值按照从小到大的顺序排列;

● 列出各组频数;

● 计算各组累计频数;

● 确定各组RSR的秩次R及平均秩次 gif.gif

计算向下累计频率\frac{\bar{R}}{n}*100%, 最后一项用gif.gif修正;

● 根据累计频率,查询“百分数与概率单位对照表”,求其所对应概率单位 Probit 值;

● 利用表格中的RSR分布值作为自变量,Probit值作为因变量,进行线性回归,结果如下表格。

百分比与概率单位对照表 - 豆丁网


#绘制RSR分布表
RSR=R_result['RSR']
RSR_RANK_DICT = dict(zip(RSR.values, RSR.rank().values))
Distribution = pd.DataFrame(index=sorted(RSR.unique()))
Distribution['f'] = RSR.value_counts().sort_index()
Distribution['Σf'] = Distribution['f'].cumsum()
Distribution[r'平均秩数'] = [RSR_RANK_DICT[i] for i in Distribution.index]
Distribution[r'平均秩数/n*100%'] = Distribution[r'平均秩数'] / m
Distribution.iat[-1, -1] = 1 - 1 / (4 * n)
Distribution['Probit'] = 5 - norm.isf(Distribution.iloc[:, -1])

15de671c59204fce8913d48a57187ff0.png

5.回归分析


上一步得到Probit值之后,将其作为自变量X,将RSR分布值作为因变量Y;进行回归模型拟合,并结合此回归模型公式得到各个地区RSR值的拟合值,用于最终的分档排序等使用。

r0 = np.polyfit(Distribution['Probit'], Distribution.index, deg=1)
sm.OLS(Distribution.index, sm.add_constant(Distribution['Probit'])).fit().summary()

e29493cc9ec3436f9dae8577aa29d750.png

6.分档


按照回归方程推算所对应的RSR估计值对评价对象进行分档排序,分档数由研究者根据实际情况决定。  

● 通过RSR拟合值,以及上一表格中的RSR临界(拟合值)进行区间比较,进而得到分档等级水平;

● 分档等级Level数字越大表示等级水平越高,即效应越好。


R_result['Probit'] = R_result['RSR'].apply(lambda item: Distribution.at[item, 'Probit'])
R_result['RSR Regression'] = np.polyval(r0, R_result['Probit'])
threshold=None
threshold = np.polyval(r0, [2, 4, 6, 8,10]) if threshold is None else np.polyval(r0, threshold)
R_result['Level'] = pd.cut(R_result['RSR Regression'],threshold, labels=range(len(threshold) - 1, 0, -1))
R_result

8356575395a1411eaea7e11e56933383.png


目录
相关文章
|
20天前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
1月前
|
人工智能 安全 Java
Java和Python在企业中的应用情况
Java和Python在企业中的应用情况
53 7
|
29天前
|
机器学习/深度学习 Python
堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能
本文深入探讨了堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能。文章详细介绍了堆叠的实现步骤,包括数据准备、基础模型训练、新训练集构建及元学习器训练,并讨论了其优缺点。
50 3
|
29天前
|
机器学习/深度学习 算法 数据挖掘
线性回归模型的原理、实现及应用,特别是在 Python 中的实践
本文深入探讨了线性回归模型的原理、实现及应用,特别是在 Python 中的实践。线性回归假设因变量与自变量间存在线性关系,通过建立线性方程预测未知数据。文章介绍了模型的基本原理、实现步骤、Python 常用库(如 Scikit-learn 和 Statsmodels)、参数解释、优缺点及扩展应用,强调了其在数据分析中的重要性和局限性。
62 3
|
1月前
|
存储 监控 安全
如何在Python Web开发中确保应用的安全性?
如何在Python Web开发中确保应用的安全性?
|
1月前
|
存储 人工智能 搜索推荐
Memoripy:支持 AI 应用上下文感知的记忆管理 Python 库
Memoripy 是一个 Python 库,用于管理 AI 应用中的上下文感知记忆,支持短期和长期存储,兼容 OpenAI 和 Ollama API。
95 6
Memoripy:支持 AI 应用上下文感知的记忆管理 Python 库
|
29天前
|
存储 前端开发 API
Python在移动应用开发中的应用日益广泛
Python在移动应用开发中的应用日益广泛
44 10
|
23天前
|
缓存 开发者 Python
深入探索Python中的装饰器:原理、应用与最佳实践####
本文作为技术性深度解析文章,旨在揭开Python装饰器背后的神秘面纱,通过剖析其工作原理、多样化的应用场景及实践中的最佳策略,为中高级Python开发者提供一份详尽的指南。不同于常规摘要的概括性介绍,本文摘要将直接以一段精炼的代码示例开篇,随后简要阐述文章的核心价值与读者预期收获,引领读者快速进入装饰器的世界。 ```python # 示例:一个简单的日志记录装饰器 def log_decorator(func): def wrapper(*args, **kwargs): print(f"Calling {func.__name__} with args: {a
35 2
|
23天前
|
机器学习/深度学习 人工智能 自然语言处理
探索未来编程:Python在人工智能领域的深度应用与前景###
本文将深入探讨Python语言在人工智能(AI)领域的广泛应用,从基础原理到前沿实践,揭示其如何成为推动AI技术创新的关键力量。通过分析Python的简洁性、灵活性以及丰富的库支持,展现其在机器学习、深度学习、自然语言处理等子领域的卓越贡献,并展望Python在未来AI发展中的核心地位与潜在变革。 ###
|
1天前
|
存储 缓存 算法
探索企业文件管理软件:Python中的哈希表算法应用
企业文件管理软件依赖哈希表实现高效的数据管理和安全保障。哈希表通过键值映射,提供平均O(1)时间复杂度的快速访问,适用于海量文件处理。在Python中,字典类型基于哈希表实现,可用于管理文件元数据、缓存机制、版本控制及快速搜索等功能,极大提升工作效率和数据安全性。
21 0