秩和比综合评价法(RSR)详解及Python实现和应用

简介: 秩和比综合评价法(RSR)详解及Python实现和应用

一、RSR秩和比综合评价法概述


秩和比(Rank-sum ratio,RSR)法,它是一组全新的统计信息分析方法,是数量方法中一种广谱的方法,针对性强,操作简便,使用效果明显。非常适合于医学背景的广大用户。本法从理论上讲,融古典的参数统计与近代的非参数统计于一体,兼及描述性与推断性。该法经过二十余年的发展,在广大学者的共同支持和努力下,此法已日渐完善,广泛地应用于医疗卫生领域的多指标综合评价、统计预测预报、统计质量控制等方面。


一般过程是将效益型指标从小到大排序进行排名、成本型指标从大到小排序进行排名,再计算秩和比,最后统计回归、分档排序。通过秩转换,获得无量纲统计量RSR;在此基础上,运用参数统计分析的概念与方法,研究RSR的分布;以RSR值对评价对象的优劣直接排序或分档排序,从而对评价对象做出综合评价。


二、设计思想


设计思想:算得的RSR越大越好,为此,指标编秩时要严格区分高优与低优。


一般说来,编秩是不难的。例如治疗有效率、诊断符合率等可视为高优指标;发病率、住院病死率、平均住院日等可视为低优指标。编秩时,还可参照指标间相关分析和参照指定的“标准”。例如基于某省10个地区的产前检查率 ,孕妇死亡率,围产儿死亡率进行综合评价在综合评价中,秩和比的值能够包含所有评价指标的信息,显示出这些评价指标的综合水平,RSR值越大表明综合评价越优。


但有时还需实事求是地加以限定.例如病床利用率、平均病床周转次数一般可作高优指标理解,但过高也不见得是好事。


除区分高优指标与低优指标外,有时还要运用不分高优与低优及其种种组合形式,例如在疗效评价中,微效率可视为偏高优(高优与不分的均数),不变率可视为稍低优(偏低优与“不分”的均数)。总之,编秩的技巧问题要从业务出发来合理地解决。综合评价的方法一般是主客观结合的,方法的选择需基于实际指标数据情况选定,最为关键的是指标的选取,以及指标权重的设置,这些需要基于广泛的调研和扎实的业务知识,不能说单纯的从数学上解决的。


三、RSR的特点以及应用范围


1.优点


因为 RSR 只使用了数据的相对大小关系,而不真正运用数值本身,所以此方法综合性强,可以显示微小变动,对离群值不敏感;

能够对各个评价对象进行排序分档,找出优劣,是做比较,找关系的有效手段;

能够找出评价指标是否有独立性。

以非参数法为基础,对指标的选择无特殊要求,适用于各种评价对象,由于计算时使用的数值是秩次,可以消除异常值的干扰。


2.缺点


  1. 通过秩替代原始指标值,会损失部分信息,如原始数据的大小差别等。
  2. 不容易对各个指标进行恰当的编秩。
  3. 当 RSR 值实际上不满足正态分布时,分档归类的结果与实际情况会有偏差,且只能回答分级程度是否有差别,不能进一步回答具体的差别情况。


3.应用范围


综合评价的应用领域和范围非常广泛。


从学科领域上看,在自然科学中广泛应用于各种事物的特征和性质的评价。比如,环境监测综合评价、药物临床试验综合评价、地质灾害综合评价、气候特征综合评价、产品质量综合评价等等;

在社会科学中广泛应用于总体特征和个体特征的综合评价。比如,社会治安综合评价,生活质量综合评价、社会发展综合评价、教学水平综合评价、人居环境综合评价等等。

在经济学学科领域更为普遍。如,综合经济效益评价、小康建设进程评价、经济预警评价分析、生产方式综合评价、房地产市场景气程度综合评价等等。


四、实现步骤


1.指标权重计算


进行结果评定时我们知道影响因素的权重大小都是不一致的,我们需要先计算出各个指标的权重再进行加权秩和比,不然各个指标之间的信息差就没有意义。


计算指标权重的方法有AHP、熵权法或是自定义权重,笔者均写过AHP和熵权法、若不清楚可以阅览:层次分析法(AHP)原理以及应用


一文速学-熵权法实战确定评价指标权重


这里采用熵权法演示,且文可接熵权法演示实验,实验数据均相同,这里熵权法原理不作解释,想要了解可以看我之前的博客。


数据为港口数据开发能力系统指标:


49ac1f72c9704b329e73124fac4677a6.png

import numpy as np
import pandas as pd
df1=pd.read_excel(r'D:\拟定指标test1.xlsx')
data1=df1.iloc[:,1:7]
#min-max标准化
data1_std=(data1-data1.min())/(data1.max()-data1.min())
m,n=data1_std.shape
data1_value=data1_std.values
k=1/np.log(m)
yij=data1_value.sum(axis=0)
#计算第j项指标下第i个样本值占比重:
pij=data1_value/yij
#计算各指标的信息熵:
test=pij*np.log(pij)
test=np.nan_to_num(test)
ej=-k*(test.sum(axis=0))
#计算每种指标的权重
wi=(1-ej)/np.sum(1-ej)

得到各个指标的权重:

7e4bb1620cdc4c25a26ac57766d81601.png

2.编秩


根据每一个具体的评价指标按其指标值的大小进行排序,得到秩次R,用秩次R来代替原来的评价指标值。

编秩方法总共有两种:


1.整秩法


将 n 个评价对象的 m 个评价指标排列成 n 行 m 列的原始数据表。编出每个指标各评价对象的秩,其中效益型指标(可以理解为正向指标)从小到大编秩,成本型指标(可理解为负向指标)从大到小编秩,同一指标数据相同者编平均秩。得到秩矩阵R;


2.非整秩法


此方法用类似于线性插值的方式对指标值进行编秩,以改进 RSR 法编秩方法的不足,所编秩次与原指标值之间存在定量的线性对应关系,从而克服了 RSR 法秩次化时易损失原指标值定量信息的缺点。


对于效益型指标:

8e12f8f15aee4bbbb328696945efa2a8.png


对于成本型指标:


12dc653801af4cdb8e6ac71e870e4424.png

这里采用整秩法:

R_result=pd.DataFrame()
for i, X in enumerate(data1_std.columns):
            R_result[f'X{str(i + 1)}:{X}'] = data1_std.iloc[:, i]
            R_result[f'R{str(i + 1)}:{X}'] = R_result.iloc[:, i].rank(method="dense")


a31eca7035c5442dbf583b8122f60d79.png


3.计算秩和比RSR值

一个gif.gifgif.gif列的矩阵中,其对应的RSR计算公式为:

gif.gif

其中i=1,2,...,n;j=1,2...,m,R_{ij}表示为第i行第j列元素的秩。

当个评价指标的权重不同时,计算加权秩和比为


gif.gif

W_{j}表示第第j个指标的权重。RSR值无量纲,最小值为gif.gif,最大值为1.

# 计算秩和比
R_result['RSR'] = (R_result.iloc[:, 1::2] * wi).sum(axis=1) / n
R_result['RSR_Rank'] = R_result['RSR'].rank(ascending=False)


4.绘制秩和比RSR分布表


其方法为:

● 将RSR值按照从小到大的顺序排列;

● 列出各组频数;

● 计算各组累计频数;

● 确定各组RSR的秩次R及平均秩次 gif.gif

计算向下累计频率\frac{\bar{R}}{n}*100%, 最后一项用gif.gif修正;

● 根据累计频率,查询“百分数与概率单位对照表”,求其所对应概率单位 Probit 值;

● 利用表格中的RSR分布值作为自变量,Probit值作为因变量,进行线性回归,结果如下表格。

百分比与概率单位对照表 - 豆丁网


#绘制RSR分布表
RSR=R_result['RSR']
RSR_RANK_DICT = dict(zip(RSR.values, RSR.rank().values))
Distribution = pd.DataFrame(index=sorted(RSR.unique()))
Distribution['f'] = RSR.value_counts().sort_index()
Distribution['Σf'] = Distribution['f'].cumsum()
Distribution[r'平均秩数'] = [RSR_RANK_DICT[i] for i in Distribution.index]
Distribution[r'平均秩数/n*100%'] = Distribution[r'平均秩数'] / m
Distribution.iat[-1, -1] = 1 - 1 / (4 * n)
Distribution['Probit'] = 5 - norm.isf(Distribution.iloc[:, -1])

15de671c59204fce8913d48a57187ff0.png

5.回归分析


上一步得到Probit值之后,将其作为自变量X,将RSR分布值作为因变量Y;进行回归模型拟合,并结合此回归模型公式得到各个地区RSR值的拟合值,用于最终的分档排序等使用。

r0 = np.polyfit(Distribution['Probit'], Distribution.index, deg=1)
sm.OLS(Distribution.index, sm.add_constant(Distribution['Probit'])).fit().summary()

e29493cc9ec3436f9dae8577aa29d750.png

6.分档


按照回归方程推算所对应的RSR估计值对评价对象进行分档排序,分档数由研究者根据实际情况决定。  

● 通过RSR拟合值,以及上一表格中的RSR临界(拟合值)进行区间比较,进而得到分档等级水平;

● 分档等级Level数字越大表示等级水平越高,即效应越好。


R_result['Probit'] = R_result['RSR'].apply(lambda item: Distribution.at[item, 'Probit'])
R_result['RSR Regression'] = np.polyval(r0, R_result['Probit'])
threshold=None
threshold = np.polyval(r0, [2, 4, 6, 8,10]) if threshold is None else np.polyval(r0, threshold)
R_result['Level'] = pd.cut(R_result['RSR Regression'],threshold, labels=range(len(threshold) - 1, 0, -1))
R_result

8356575395a1411eaea7e11e56933383.png


目录
相关文章
|
3天前
|
机器学习/深度学习 人工智能 算法框架/工具
Python在人工智能领域的应用与发展
【2月更文挑战第6天】随着人工智能技术的快速发展,Python作为一种简洁高效的编程语言,在人工智能领域扮演着举足轻重的角色。本文将探讨Python在人工智能领域的应用现状和未来发展方向,分析其在机器学习、深度学习等方面的优势,并展望Python在人工智能领域的前景。
16 6
|
3天前
|
机器学习/深度学习 算法 数据挖掘
Python在数据分析中的应用与未来发展
【2月更文挑战第6天】 随着数据时代的到来,数据分析技术在各行各业中发挥着越来越重要的作用。Python作为一种高效、灵活的编程语言,被广泛运用于数据分析领域。本文将探讨Python在数据分析中的应用场景、优势以及未来发展趋势,旨在帮助读者更好地了解Python在数据分析领域的价值和潜力。
|
21小时前
|
数据采集 机器学习/深度学习 存储
万字长文,Python的应用领域有哪些?
万字长文,Python的应用领域有哪些?
|
1天前
|
Python
Python编程中的装饰器应用探究
【2月更文挑战第8天】装饰器是Python编程中一个重要且强大的工具,它能够简洁地实现函数的包装和扩展,提高代码的复用性和可读性。本文将深入探讨装饰器在Python编程中的应用,结合实际例子详细讲解装饰器的定义、使用方法及常见应用场景,帮助读者更好地理解和运用装饰器这一高级特性。
|
1天前
|
机器学习/深度学习 自然语言处理 数据可视化
Python在数据分析中的应用
【2月更文挑战第8天】随着数据科学的快速发展,Python作为一种强大且灵活的编程语言,在数据分析领域扮演着重要的角色。本文将介绍Python在数据分析中的应用,并探讨其优势和功能。
6 1
|
2天前
|
人工智能 数据可视化 算法
实例解读:Python量化分析在投资中的应用
实例解读:Python量化分析在投资中的应用
|
2天前
|
数据挖掘 大数据 数据处理
Python在数据分析中的应用
【2月更文挑战第7天】传统的数据分析方法已经不能满足当今大数据环境下的需求,Python作为一种高效、灵活的编程语言,被广泛应用于数据分析领域。本文将介绍Python在数据分析中的优势以及其常用库和工具,并结合实际案例说明Python在数据分析中的应用。
|
2天前
|
机器学习/深度学习 数据可视化 数据挖掘
Python技术应用:数据分析与可视化的利器
【2月更文挑战第7天】在当今信息爆炸的时代,数据分析和可视化已经成为各行业的核心竞争力。Python作为一种简洁、高效的编程语言,为数据分析带来了全新的可能性。本文将介绍Python在数据分析和可视化领域的应用,探讨其在实际工作中的重要性和价值。
11 2
|
2天前
|
机器学习/深度学习 人工智能 数据挖掘
Python在数据分析中的应用及未来发展趋势
【2月更文挑战第7天】传统的数据分析方法已经无法满足当今大数据时代的需求,Python作为一种高效、灵活的编程语言,在数据分析领域扮演着越来越重要的角色。本文将探讨Python在数据分析中的应用现状,并对其未来发展趋势进行展望。
|
2天前
|
机器学习/深度学习 数据可视化 数据挖掘
Python在数据分析中的应用及其优势
【2月更文挑战第7天】 本文将探讨Python在数据分析领域的应用及其优势,着重介绍了Python在处理大规模数据、可视化分析和机器学习等方面的特点。通过实际案例和技术原理的介绍,帮助读者深入了解Python在数据分析中的价值和作用。
14 0

相关产品

  • 云迁移中心