Java多线程 关闭线程池 shutdown() 、shutdownNow()、awaitTermination()

简介: Java多线程 关闭线程池 shutdown() 、shutdownNow()、awaitTermination()

一、说明


ThreadPoolExecutor


  • 继承 Executor 接口


  • 它有多个构造方法来实现自定义创建线程池,以内部线程池的形式对外提供管理任务执行,线程调度,线程池管理等


  • 关闭线程池调用 shutdown()shutdownNow()awaitTermination()方法


二、理解


shutdown()


  • 只关闭了提交通道,停止接收新任务,已提交的任务会继续执行直到完成,此方法不会阻塞,当所有提交任务执行完毕,线程池被关闭


public void shutdown() {
    // 上锁确保只有一个线程执行此操作
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        // 检查是否有权限关闭线程池以和中断线程
        checkShutdownAccess();
        // 将线程池状态设置为SHUTDOWN
        advanceRunState(SHUTDOWN);
        // 中断所有空闲线程
        interruptIdleWorkers();
        // 用于取消延时任务
        onShutdown(); // hook for ScheduledThreadPoolExecutor
    } finally {
        mainLock.unlock();
    }
    // 将线程池置为TERMINATED状态
    tryTerminate();
}


shutdownNow()


  • 立即停止线程池,停止接收新任务,中断所有正在执行的任务,停止对等待队列的处理,立刻返回未执行的任务列表


public List<Runnable> shutdownNow() {
    List<Runnable> tasks;
    // 上锁确保只有一个线程执行此操作
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        // 检查是否有权限关闭线程池以和中断线程
        checkShutdownAccess();
        // 将线程池运行状态置为STOP
        advanceRunState(STOP);
        // 中断所有线程
        interruptWorkers();
        // 将未执行的任务移入列表中
        tasks = drainQueue();
    } finally {
        mainLock.unlock();
    }
    // 将线程池置为TERMINATED状态
    tryTerminate();
    return tasks;
}


awaitTermination()


  • shutdown()调用之后使用,阻塞当前线程,在这之后可以继续提交任务,设置等待超时时间,等待所有任务都执行完成,检查线程池是否终止,如果终止返回 true,否则返回 false,并解除阻塞


  • 如果在超时之前所有任务执行完毕,表示线程池已经终止,返回true,否则返回false


  • 如果在shutdown()之前使用,线程池未终止,awaitTermination()锁在等待终止状态,造成死锁


    public boolean awaitTermination(long timeout, TimeUnit unit)
        throws InterruptedException {
        // 将时间单位转化为纳秒
        long nanos = unit.toNanos(timeout);
        // 上锁确保只有一个线程执行此操作
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
          // 如果线程池在超池之前终止,返回true
            while (!runStateAtLeast(ctl.get(), TERMINATED)) {
            // 超时但是线程池未终止,返回false
                if (nanos <= 0L)
                    return false;
            // 实现阻塞
                nanos = termination.awaitNanos(nanos);
            }
            return true;
        } finally {
            mainLock.unlock();
        }
    }


线程池的生命周期


  • 线程池的状态(runState)和工作线程数量(workerCount)共同保存在 AtomicInteger 类型的控制变量 ctl


  • ctl高三位保存运行状态(23=8>5),低29位保存工作线程的数量(229-1)


  // 初始运行状态为RUNNING,线程数为0
    private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
    // COUNT_BITS: 29
    private static final int COUNT_BITS = Integer.SIZE - 3;
    // CAPACITY: 十进制: 536870911 二进制: 00011111111111111111111111111111
    private static final int CAPACITY   = (1 << COUNT_BITS) - 1;
    // runState is stored in the high-order bits 
    // RUNNING: 十进制:-536870912  二进制:11100000000000000000000000000000
    private static final int RUNNING    = -1 << COUNT_BITS;
    // SHUTDOWN: 十进制:0  二进制:0
    private static final int SHUTDOWN   =  0 << COUNT_BITS;
    // STOP: 十进制:536870912  二进制:00100000000000000000000000000000
    private static final int STOP       =  1 << COUNT_BITS;
    // TIDYING: 十进制:1073741824  二进制:01000000000000000000000000000000
    private static final int TIDYING    =  2 << COUNT_BITS;
    // TERMINATED: 十进制:1610612736  二进制:01100000000000000000000000000000
    private static final int TERMINATED =  3 << COUNT_BITS;
    // Packing and unpacking ctl 打包和解包ctl
    // 获取线程池当前状态,CAPACITY取反,高三位都是1,低29位都是0,和ctl进行与运算,获得runState变量
    private static int runStateOf(int c)     { return c & ~CAPACITY; }
    // CAPACITY高三位都是0,低29位都是0,和ctl进行与运算获得workerCount变量
    private static int workerCountOf(int c)  { return c & CAPACITY; }
    // 初始化ctl变量,runState和workerCount进行或运算后共同存储在一个变量中
    private static int ctlOf(int rs, int wc) { return rs | wc; }


  • RUNNING 接收新的任务,并且可执行队列里的任务


  • SHUTDOWN 停止接收新任务,但可执行队列里的任务


  • STOP 停止接收新任务,不执行队列里的任务,中断正在执行的任务


  • TIDYING 所有任务都已终止,线程数为0,线程池变为TIDYING状态,会执行钩子函数terminated(),钩子方法是指使用一个抽象类实现接口,一个抽象类实现这个接口,需要的方法设置为abstract,其它设置为空方法


  • TERMINATED 终止状态,表示线程池已终止,已经执行完terminated()钩子方法


判断当前线程池运行状态


  // 判断线程池当前运行状态是否小于给定值
    private static boolean runStateLessThan(int c, int s) {
        return c < s;
    }
  // 判断线程池当前运行状态是否大于等于给定值
    private static boolean runStateAtLeast(int c, int s) {
        return c >= s;
    }
  // 判断线程池是否处于RUNNING状态
    private static boolean isRunning(int c) {
        return c < SHUTDOWN;
    }
   // 判断线程池是否处于SHUTDOWN状态
    public boolean isShutdown() {
        return ! isRunning(ctl.get());
    }
   // 判断线程池是否处于TERMINATING状态
    public boolean isTerminating() {
        int c = ctl.get();
        return ! isRunning(c) && runStateLessThan(c, TERMINATED);
    }
   // 判断线程池是否处于TERMINATED状态
    public boolean isTerminated() {
        return runStateAtLeast(ctl.get(), TERMINATED);
    }


运行状态转换关系



三、实现


1.shutdown()


创建一个ShutdownTest类,默认使用ThreadPoolExecutor.AbortPolicy拒绝策略,队列是ArrayBlockingQueue,设置核心线程数最大值为1,线程池线程数最大值为2,最大等待时间为5秒,等待队列值为2,提交8个任务,在第5个任务的时候执行 shutdown()


public class ShutdownTest {
    public static void main(String[] args) {
        // 1.创建线程池
        ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(1, 2, 5,
                TimeUnit.SECONDS,
                new ArrayBlockingQueue<>(2),
                Executors.defaultThreadFactory());
        // 2.创建线程任务
        for (int i = 1; i <= 8; i++) {
            // 3.执行任务
            System.out.println("执行第"+i+"个任务");
                threadPoolExecutor.execute(new runnable("任务"+i));
                // 4.获取等待队列
                Iterator iterator = threadPoolExecutor.getQueue().iterator();
                System.out.print("当前等待队列 ");
                while (iterator.hasNext()){
                    runnable thread = (runnable) iterator.next();
                    System.out.print(thread.name + "\t");
                }
                System.out.print("\n");
                System.out.println("--------");
            // 5.关闭线程池
            if (i == 4) {
                threadPoolExecutor.shutdown();
                System.out.println("线程池已关闭");
            }
        }
    }
    static class runnable implements Runnable{
        // 设置任务名
        String name;
        public runnable(String setName) {
            this.name = setName;
        }
        @Override
        public void run() {
            try {
                System.out.println("线程:"+Thread.currentThread().getName() +" 执行: "+name);
            } catch (Exception e) {
                e.printStackTrace();
            }
        }
    }
}


执行 shutdown(),此时停止接收新任务,已提交的任务会继续执行直到完成,此方法不会阻塞,抛出RejectedExecutionException



如果捕获RejectedExecutionException,可以看到任务被拒绝了


    public static void main(String[] args) {
        // 1.创建线程池
        ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(1, 2, 5,
                TimeUnit.SECONDS,
                new ArrayBlockingQueue<>(2),
                Executors.defaultThreadFactory());
        // 2.创建线程任务
        for (int i = 1; i <= 8; i++) {
            // 3.执行任务
            System.out.println("执行第"+i+"个任务");
            try {
                threadPoolExecutor.execute(new runnable("任务"+i));
                // 4.获取等待队列
                Iterator iterator = threadPoolExecutor.getQueue().iterator();
                System.out.print("当前等待队列 ");
                while (iterator.hasNext()){
                    runnable thread = (runnable) iterator.next();
                    System.out.print(thread.name + "\t");
                }
                System.out.print("\n");
                System.out.println("--------");
            } catch (RejectedExecutionException e) {
                // 5.捕获拒绝执行策略异常
                System.out.println("拒绝执行第" + i + "个任务");
            }
            // 6.关闭线程池
            if (i == 4) {
                threadPoolExecutor.shutdown();
                System.out.println("线程池已关闭");
            }
        }
    }



2.shutdownNow()


立即停止线程池,停止接收新任务,中断所有正在执行的任务,停止对等待队列的处理


            // 6.关闭线程池
            if (i == 4) {
                threadPoolExecutor.shutdownNow();
                System.out.println("线程池已关闭");
            }



3.awaitTermination()


此方法阻塞,在shutdown()调用之后,停止接收新任务,但是awaitTermination()后可以继续提交,此方法是阻塞的,用来检测timeout时间后线程池是否终止,如果停止,则返回true并释放锁


public class ShutdownTest {
    public static void main(String[] args) throws InterruptedException {
        // 1.创建线程池
        ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(1, 2, 5,
                TimeUnit.SECONDS,
                new ArrayBlockingQueue<>(2),
                Executors.defaultThreadFactory());
        // 2.创建线程任务
        for (int i = 1; i <= 8; i++) {
            // 3.执行任务
            System.out.println("执行第"+i+"个任务");
            try {
                threadPoolExecutor.execute(new runnable("任务"+i));
                // 4.获取等待队列
                Iterator iterator = threadPoolExecutor.getQueue().iterator();
                System.out.print("当前等待队列 ");
                while (iterator.hasNext()){
                    runnable thread = (runnable) iterator.next();
                    System.out.print(thread.name + "\t");
                }
                System.out.print("\n");
                System.out.println("--------");
            } catch (RejectedExecutionException e) {
                // 5.捕获拒绝执行策略异常
                System.out.println("拒绝执行第" + i + "个任务");
            }
            // 6.关闭线程池
            if (i == 4) {
                threadPoolExecutor.shutdown();
                while (!threadPoolExecutor.awaitTermination(1, TimeUnit.SECONDS)) {
                    System.out.println("线程池未关闭");
                }
                System.out.println("线程池已经关闭");
            }
        }
    }
    static class runnable implements Runnable{
        // 设置任务名
        String name;
        public runnable(String setName) {
            this.name = setName;
        }
        @Override
        public void run() {
            try {
                System.out.println("线程:"+Thread.currentThread().getName() +" 执行: "+name);
                Thread.sleep(5000);
            } catch (Exception e) {
                e.printStackTrace();
            }
        }
    }
}


保证了线程池和其他线程的之间的执行顺序



如果 shutdown()awaitTermination()后调用的话,awaitTermination()依然锁在等待终止状态,而 shutdown() 也无法得到锁去让线程池停止,这就形成了死锁


            // 6.关闭线程池
            if (i == 4) {
                while (!threadPoolExecutor.awaitTermination(1, TimeUnit.SECONDS)) {
                    System.out.println("线程池未关闭");
                }
                threadPoolExecutor.shutdown();
                System.out.println("线程池已经关闭");
            }


目录
相关文章
|
11天前
|
Java
Java—多线程实现生产消费者
本文介绍了多线程实现生产消费者模式的三个版本。Version1包含四个类:`Producer`(生产者)、`Consumer`(消费者)、`Resource`(公共资源)和`TestMain`(测试类)。通过`synchronized`和`wait/notify`机制控制线程同步,但存在多个生产者或消费者时可能出现多次生产和消费的问题。 Version2将`if`改为`while`,解决了多次生产和消费的问题,但仍可能因`notify()`随机唤醒线程而导致死锁。因此,引入了`notifyAll()`来唤醒所有等待线程,但这会带来性能问题。
Java—多线程实现生产消费者
|
13天前
|
安全 Java Kotlin
Java多线程——synchronized、volatile 保障可见性
Java多线程中,`synchronized` 和 `volatile` 关键字用于保障可见性。`synchronized` 保证原子性、可见性和有序性,通过锁机制确保线程安全;`volatile` 仅保证可见性和有序性,不保证原子性。代码示例展示了如何使用 `synchronized` 和 `volatile` 解决主线程无法感知子线程修改共享变量的问题。总结:`volatile` 确保不同线程对共享变量操作的可见性,使一个线程修改后,其他线程能立即看到最新值。
|
13天前
|
消息中间件 缓存 安全
Java多线程是什么
Java多线程简介:本文介绍了Java中常见的线程池类型,包括`newCachedThreadPool`(适用于短期异步任务)、`newFixedThreadPool`(适用于固定数量的长期任务)、`newScheduledThreadPool`(支持定时和周期性任务)以及`newSingleThreadExecutor`(保证任务顺序执行)。同时,文章还讲解了Java中的锁机制,如`synchronized`关键字、CAS操作及其实现方式,并详细描述了可重入锁`ReentrantLock`和读写锁`ReadWriteLock`的工作原理与应用场景。
|
13天前
|
安全 Java 编译器
深入理解Java中synchronized三种使用方式:助您写出线程安全的代码
`synchronized` 是 Java 中的关键字,用于实现线程同步,确保多个线程互斥访问共享资源。它通过内置的监视器锁机制,防止多个线程同时执行被 `synchronized` 修饰的方法或代码块。`synchronized` 可以修饰非静态方法、静态方法和代码块,分别锁定实例对象、类对象或指定的对象。其底层原理基于 JVM 的指令和对象的监视器,JDK 1.6 后引入了偏向锁、轻量级锁等优化措施,提高了性能。
37 3
|
13天前
|
存储 安全 Java
Java多线程编程秘籍:各种方案一网打尽,不要错过!
Java 中实现多线程的方式主要有四种:继承 Thread 类、实现 Runnable 接口、实现 Callable 接口和使用线程池。每种方式各有优缺点,适用于不同的场景。继承 Thread 类最简单,实现 Runnable 接口更灵活,Callable 接口支持返回结果,线程池则便于管理和复用线程。实际应用中可根据需求选择合适的方式。此外,还介绍了多线程相关的常见面试问题及答案,涵盖线程概念、线程安全、线程池等知识点。
93 2
|
13天前
|
NoSQL Redis
单线程传奇Redis,为何引入多线程?
Redis 4.0 引入多线程支持,主要用于后台对象删除、处理阻塞命令和网络 I/O 等操作,以提高并发性和性能。尽管如此,Redis 仍保留单线程执行模型处理客户端请求,确保高效性和简单性。多线程仅用于优化后台任务,如异步删除过期对象和分担读写操作,从而提升整体性能。
40 1
|
3月前
|
存储 消息中间件 资源调度
C++ 多线程之初识多线程
这篇文章介绍了C++多线程的基本概念,包括进程和线程的定义、并发的实现方式,以及如何在C++中创建和管理线程,包括使用`std::thread`库、线程的join和detach方法,并通过示例代码展示了如何创建和使用多线程。
63 1
|
3月前
|
Java 开发者
在Java多线程编程中,创建线程的方法有两种:继承Thread类和实现Runnable接口
【10月更文挑战第20天】在Java多线程编程中,创建线程的方法有两种:继承Thread类和实现Runnable接口。本文揭示了这两种方式的微妙差异和潜在陷阱,帮助你更好地理解和选择适合项目需求的线程创建方式。
41 3
|
3月前
|
Java 开发者
在Java多线程编程中,选择合适的线程创建方法至关重要
【10月更文挑战第20天】在Java多线程编程中,选择合适的线程创建方法至关重要。本文通过案例分析,探讨了继承Thread类和实现Runnable接口两种方法的优缺点及适用场景,帮助开发者做出明智的选择。
28 2
|
3月前
|
Java
Java中多线程编程的基本概念和创建线程的两种主要方式:继承Thread类和实现Runnable接口
【10月更文挑战第20天】《JAVA多线程深度解析:线程的创建之路》介绍了Java中多线程编程的基本概念和创建线程的两种主要方式:继承Thread类和实现Runnable接口。文章详细讲解了每种方式的实现方法、优缺点及适用场景,帮助读者更好地理解和掌握多线程编程技术,为复杂任务的高效处理奠定基础。
45 2